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Abstract—Global urban transport systems are under
mounting pressure from chronic congestion, rising carbon
emissions, and widening public health burdens. Yet many
traditional planning approaches treat technological innovation,
policy interventions, and health impact assessment as separate
tracks, which often leads to fragmented solutions and weak
systemic outcomes. To address this gap, this study proposes a
Design– Policy Synergy Optimization Model (DPSOM)— a
data-driven framework intended to quantify and harness the
two-way reinforcement between system design decisions and
policy governance in order to accelerate sustainable and
healthy urban mobility transitions.At its core, DPSOM
formulates urban mobility transition as a constrained
optimization problem, solved through a Heuristic Iterative
Feedback (HIF) algorithm that treats policy as an adaptive
control mechanism within a closed-loop system. The model’s
key innovation is the introduction of a Health-Adjusted Modal
Split (HAMS) Index as the primary optimization objective. By
making health-adjusted mobility performance the central
target, DPSOM ensures that engineering and infrastructure
solutions are intrinsically aligned with public health outcomes
rather than treating health as an external evaluation step.The
framework is validated through a 12-year longitudinal case
study of Hangzhou, China (2010 – 2022), examining the
evolution of the city’s transport system over time. Empirical
results show that applying DPSOM principles corresponds
with a substantial shift in mobility structure, with the public
transport modal split increasing from 28.5% to 60.5%. A
comparative evaluation against a No-Feedback Baseline (NFB)
indicates that DPSOM achieves a 49.1% higher HAMS Index
in the final phase, with the performance difference being
statistically significant (p < 0.001). Sensitivity testing further
demonstrates that these results remain robust under different
health-weighting assumptions.Overall, this research
contributes a replicable and quantifiable methodology for
guiding sustainable transport transitions. By explicitly
modeling design– policy co-evolution and embedding health
outcomes into the optimization objective, DPSOM offers
practical engineering value for urban planners and decision-
makers seeking integrated pathways toward low-carbon,
healthy, and resilient urban mobility systems.

Keywords—Design-Policy Synergy; Urban Transport
Optimization; HAMS Index; System Engineering; Adaptive
Control; Hangzhou

I. INTRODUCTION
The escalating demand for urban mobility, together with

the urgent requirements of environmental sustainability and
public health protection, has created a complex multi-

objective optimization problem for modern transport
engineering [1][2]. Conventional transport planning—largely
based on the four-step model—has historically emphasized
maximizing throughput and reducing congestion. In many
cases, this emphasis has contributed to car-oriented
infrastructure development, which can intensify air pollution,
encourage sedentary behavior, and increase public health
risks [3]. As a result, the engineering objective is shifting
from narrow efficiency targets toward holistic optimization
of socio-technical transport systems, where human well-
being becomes a core performance metric. This transition
calls for a robust framework capable of representing— and
operationalizing — the dynamic interaction between
technological design decisions and macro-level policy
governance.

Achieving sustainable transport requires coordinated
evolution across three distinct but tightly interconnected
domains: technological design (e.g., public bicycle systems,
intelligent traffic control), policy governance (e.g.,
investment strategies, regulatory instruments), and health
outcomes (e.g., promoting active mobility and reducing
exposure-related risks). However, many existing solutions
remain fragmented. Intelligent Transport Systems (ITS) can
be highly effective for real-time traffic management, yet they
typically operate without explicit health-centered objectives
[4]. Conversely, public health initiatives often lack
mechanisms to directly influence the design, prioritization,
and resource allocation of core transport infrastructure. The
underlying technical gap is the absence of a rigorous,
quantifiable framework that captures the bidirectional
feedback loop between design and policy. Existing models
commonly assume a static policy environment when
optimizing design, or treat policy as a one-way, top-down
mandate, which fails to represent the adaptive and iterative
nature of real-world urban transitions—particularly in fast-
evolving contexts such as China [5]. This leads to two key
engineering shortcomings: (1) the inability to quantify health
benefits as a primary optimization driver in design decisions,
and (2) the lack of a formal, data-driven mechanism for
policy adjustment based on observed system performance.

To address these challenges, this study proposes the
Design–Policy Synergy Optimization Model (DPSOM), a
system engineering framework intended to overcome the
limitations above. The core objectives of the study are to: (1)
formalize the bidirectional empowerment between multi-
level system design and policy governance; (2) embed health
outcomes as an explicit optimization objective through the
proposed Health-Adjusted Modal Split (HAMS) Index; (3)Corresponding Author: Zhiyuan Shi,342 Bull St., Savannah, GA,
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develop an adaptive control mechanism implemented via a
Heuristic Iterative Feedback (HIF) algorithm; and (4)
validate the framework using longitudinal data from
Hangzhou, China. The primary technical contributions
include the unified optimization framework, the novel
HAMS Index, and the HIF algorithm, together providing a
replicable methodology for urban planners and transport
decision-makers. The remainder of the paper is organized as
follows: Section 2 reviews related literature; Section 3 details
the DPSOM methodology, including the dynamic system
formulation and constrained optimization process; Section 4
reports the empirical results and statistical validation; Section
5 discusses engineering implications; and Section 6
concludes the study.

II. RELATED WORK

The literature review is organized to position the
proposed Design – Policy Synergy Optimization Model
(DPSOM) against existing approaches to transport system
modeling and optimization, with particular attention to three
technical limitations: dynamic system representation,
adaptive control, and multi-objective optimization.

Conventional transport planning remains largely
dependent on static equilibrium approaches, most notably the
four-step model. While effective for forecasting under stable
conditions, such models are poorly suited to capturing the
non-linear dynamics, feedback effects, and path dependency
inherent in long-term urban mobility transitions [4]. To
overcome these shortcomings, more advanced modeling
techniques have been introduced, particularly System
Dynamics (SD) and Agent-Based Modeling (ABM) [5]. SD
models are valuable for representing feedback loops and
long-term trends, but they are typically built on qualitative
causal structures and lack the mathematical rigor needed for
constrained optimization and formal control [6]. ABM, by
contrast, provides high-resolution insight into individual
behavior, yet its computational intensity and calibration
difficulty make it impractical for evaluating macro-level
policy interventions across extended time horizons [7].

DPSOM addresses this gap by adopting a discrete-time
dynamic system formulation (Equation 1) that is both
computationally efficient and analytically tractable. Within
this structure, macro-level policy variables I and micro-level
design variables D are explicitly represented as system inputs.
This formulation enables the direct application of control
theory principles — marking a clear departure from
descriptive SD models and computationally heavy ABM
approaches — and provides a formal bridge between
engineering design and policy governance.

Adaptive control has been widely studied in the context
of Intelligent Transport Systems (ITS), particularly at the
operational scale, such as adaptive signal control [8]. More
recently, reinforcement learning (RL) methods have
demonstrated strong performance in optimizing traffic flow
and signal timing compared to fixed or reactive control
strategies [9][10]. However, these applications are largely
confined to short time horizons, low-latency feedback, and
relatively narrow objective functions. In contrast, policy
operates as a macro-level control mechanism with long
feedback cycles ( τ ≈ 2 years) and inherently multi-
objective decision spaces. Applying RL directly at this scale

is impractical due to sparse and delayed rewards, high-
dimensional state spaces, and the non-stationarity of urban
systems.

To address this challenge, DPSOM introduces the
Heuristic Iterative Feedback (HIF) algorithm as a pragmatic
and low-cost adaptive control mechanism. HIF models the
interaction between policy and design as a closed-loop
control system, in which the policy vector I is iteratively
updated based on a long-term performance error signal �� .
This approach is explicitly tailored to the institutional and
temporal characteristics of urban governance, representing a
novel extension of control theory concepts to strategic urban
transport planning [11].

Finally, transport system optimization is inherently multi-
objective, requiring trade-offs among efficiency, equity,
environmental sustainability, and social outcomes. Recent
studies in IEEE Transactions on Intelligent Transportation
Systems and Transportation Research Part C have employed
Pareto-based methods to balance competing objectives [12].
Nevertheless, public health is rarely incorporated as a
primary, mathematically explicit optimization target.
Existing health impact models, such as the Integrated
Transport and Health Impact Model (ITHIM), are
predominantly used for ex-post assessment rather than as
drivers of system design [13].

The introduction of the Health-Adjusted Modal Split
(HAMS) Index represents a key technical contribution of
DPSOM. Rather than treating health as an external constraint
or secondary evaluation metric, HAMS is defined as a first-
order objective function that directly guides the optimization
process. By formulating the problem using the Lagrange
multiplier method (Section 3.2), DPSOM ensures that system
evolution is optimized to maximize the marginal return on
investment with respect to health outcomes. This provides a
rigorous and quantifiable framework for health-centered
resource allocation in urban transport systems, addressing a
critical gap in existing optimization-based planning models
[14].

III. METHODOLOGY AND SYSTEM DESIGN

The Design – Policy Synergy Optimization Model
(DPSOM) is a dynamic system engineering framework that
formulates urban transport transition as a constrained, multi-
objective optimization problem. This section outlines the
DPSOM architecture, the definition of the HAMS Index, the
constrained optimization formulation, and the proposed
Heuristic Iterative Feedback (HIF) algorithm.

A. Dynamic System Modeling and Problem Formalization
In DPSOM, the urban transport system is represented as a

discrete-time dynamic system S. The system state at time t is
captured by a performance vector P(t), which summarizes
key transport, environmental, and health-related outcomes.
System evolution is governed by a non-linear transfer
function F(⋅ ), defined as:

��+1 = �(��, ��, ��|�) 

where Dt denotes the vector of design variables at time t,
�� denotes the vector of policy variables at time t, and ω
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represents model parameters (e.g., structural coefficients and
exogenous contextual factors) that shape system response.

The optimization task is to identify the optimal sequences
of inputs D and I over a planning horizon T, such that the
desired transition objectives are achieved under specified
constraints. All variables, along with their empirical
engineering proxies used for validation, are summarized in
Table I.

TABLE I. DPSOM DECISION VARIABLES AND EMPIRICAL PROXIES

Variab
le

Type

Paramete
r

Symbol Unit/Ran
ge

Definition Empirica
l Proxy
(Hangzh
ou Case)

Design
Input

Compone
nt
Efficiency

eta_C [0, 1] Functional
reliability
of micro-
component
s.

PBS
equipmen
t
maintena
nce rate
(1 -
sensor
failure
rate).

Design
Input

Network
Accessibil
ity

lambda
_N

Stations/k
m2

Spatial
density of
the
sustainable
transport
network.

PBS
station
density
within the
core
urban
area.

Design
Input

System
Integratio
n Index

alpha_I [0, 1] Degree of
data and
operational
integration
between
modes
(ITS).

Normaliz
ed data
sharing
rate
between
City
Brain and
public
transport
systems.

Policy
Input

Investmen
t Rate

R_I Normalize
d Index

Annual
public
investment
allocated
to
sustainable
transport
infrastruct
ure.

Normaliz
ed annual
budget
for non-
motorized
transport
and ITS.

Policy
Input

Constraint
Factor

beta_R [0, 1] Regulatory
measures
restricting
unsustaina
ble modes.

Normaliz
ed score
based on
car
restriction
zones and
public
transport
subsidy
rate.

The primary optimization objective of the DPSOM is to
maximize overall system performance, which is quantified
using the Health-Adjusted Modal Split (HAMS) Index,
denoted as H(t):

�(�) = ���(�) × (1 + � × ��(�) 

In this formulation, MSR(t) represents the public and
active transport modal split ratio at time t1 , while AM(t)
denotes the share of active mobility modes (such as walking

and cycling). The health weighting factor ω is set to 0.5,
based on the economic valuation of Disability-Adjusted Life
Years (DALYs) saved through increased physical activity.
This calibration implies that the health benefits associated
with active transport are equivalent to a 50% increase in the
perceived utility of these modes, ensuring that public health
outcomes play a central and quantitatively meaningful role in
the optimization process [15].

B. Constrained Optimization and Lagrange Multiplier
Formulation
To ensure mathematical rigor, the instantaneous

optimization problem is formulated as the maximization of
H(t) subject to a budget constraint ��(�) ≤ �m�� . Because
H(t) depends on both the design variables D(t) and the policy
investment ��(�) , and because D(t) is itself constrained by
the available policy resources, the problem is expressed
using the Lagrange multiplier method.

The corresponding Lagrangian function L is defined as:

�(�, ��, �) = �(�, ��) − �(�� − �max ) 

The necessary optimality conditions are obtained by
setting the partial derivatives of L with respect to the
decision variables to zero. In particular, taking the derivative
with respect to �� and setting it equal to zero yields:

��
���

= 0 ⇒ � = ��
���



This condition implies that, at the optimal solution, the
marginal increase in the HAMS Index per unit of policy
investment is equal to the Lagrange multiplier μ , which
represents the shadow price of the budget constraint. In
practical terms, this provides the theoretical foundation for
the greedy search strategy used in Step 3 of the HIF
algorithm, ensuring that each design update D(t + 1) is
selected to maximize the marginal return on the available
policy investment RI(t + 1) System stability is examined by
analyzing the spectral radius of the Jacobian matrix of the
transfer function F. Stability is guaranteed when the spectral
radius is less than unity at the equilibrium point, confirming
that the discrete-time system converges in a stable, non-
chaotic manner toward the optimized HAMS target.

C. Heuristic Iterative Feedback (HIF) Algorithm
The Heuristic Iterative Feedback (HIF) algorithm

operationalizes the adaptive control mechanism in DPSOM.
It runs on a discrete time step aligned with an annual
planning cycle and applies a heuristic rule set to update the
policy vector I(t) based on observed system performance
H(t). Conceptually, the algorithm functions as a macro-level
Proportional– Integral (PI) controller, where performance
deviations accumulate over time and trigger gradual policy
adjustments.

Algorithm 1: Heuristic Iterative Feedback (HIF)

Input: P(0), Rmax , Htarget, τ, δ

Output: D1I

Initialize:

t = 0
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D(t) = D(0)

I(t) = I(0)

While �(�) < ������� and � < �m��:

�(� + 1) = �(�(�), �(�), �(�))

�(� + 1) = �������������(�(� + 1))

If � ≥ �:

��(�) = �(�) − �(� − �)

If ��(�) > �:

�(� + 1) = ������������(�(�), "����������")

Else if ��(�) <− �:

�(� + 1) = ������������(�(�), "����������")

Else �(� + 1) = �(�)
�(� + 1) = Optimize−������(�, �(� + 1), ��(� + 1))
� = t + 1
Return: �,�

In this control structure, the policy trigger signal ��(�)
acts as the error signal. It drives an integral-style
adjustment—implemented as cumulative increases in ��
(policy investment) or �� (a regulation/behavioral response
coefficient)—to reduce deviation from the target HAMS
trajectory. The lag parameter � = 2 years is selected to
represent the institutional inertia typical of urban planning
and budgeting cycles, ensuring that the model reflects the
delayed responsiveness of real-world policy systems.

IV. EXPERIMENTS AND RESULTS
To validate the effectiveness of the DPSOM framework

and the HIF algorithm, this study conducted a
comprehensive 12-year longitudinal case study of urban
transport system transformation in Hangzhou, China,
covering the period from 2010 to 2022. The experimental
design focuses on tracking the annual evolution of the system
state, key decision variables, and the Health-Adjusted Modal
Split (HAMS) Index. Data were compiled and synthesized
from official Hangzhou Municipal Statistical Yearbooks and
reports issued by the local Transport Bureau [16]. To ensure
transparency and reproducibility, all variables were mapped
explicitly; for example, the public bicycle system reliability
factor �� was calculated as :

�� = 1 − (�������������������������/
�����������������). 

A. Quantitative Results and System Performance
As summarized in Table II, the results show a clear and

sustained improvement in system performance over the study
period. The public and active transport modal split ratio
(MSR) increased by 112%, rising from 28.5% in 2010 to
60.5% in 2022. Correspondingly, the HAMS Index increased
by 134%, from 0.315 to 0.738, indicating that gains in
transport mode share were accompanied by substantial
improvements in health-adjusted system performance. These
findings demonstrate that the DPSOM framework can

effectively guide long-term, health-centered urban transport
transitions under real-world conditions.

TABLE II. ANNUAL EVOLUTION OF DPSOM PARAMETERS
(HANGZHOU CASE, 2010–2022)

Ye
ar

eta_
C

lambda
_N

alpha
_I

R_
I

beta_
R

MS
R
(%)

HA
MS
(H)

NFB
HA
MS

201
0

0.65 0.12 0.4 1.0 0.5 28.
5

0.315 0.315

201
1

0.68 0.15 0.45 1.0
5

0.5 31.
2

0.358 0.33

201
2

0.7 0.18 0.5 1.1
5

0.55 34.
5

0.398 0.345

201
3

0.75 0.22 0.52 1.3 0.58 38.
0

0.435 0.36

201
4

0.78 0.25 0.55 1.4
5

0.6 41.
2

0.452 0.375

201
5

0.8 0.28 0.6 1.6 0.65 44.
5

0.501 0.39

201
6

0.82 0.32 0.65 1.7
5

0.7 47.
8

0.555 0.405

201
7

0.84 0.35 0.7 1.9 0.72 50.
5

0.598 0.42

201
8

0.85 0.38 0.75 2.1 0.75 53.
9

0.635 0.435

201
9

0.88 0.4 0.8 2.2
5

0.8 56.
5

0.68 0.45

202
0

0.9 0.42 0.85 2.4 0.82 58.
5

0.71 0.465

202
1

0.91 0.44 0.88 2.5 0.84 59.
8

0.725 0.48

202
2

0.92 0.45 0.9 2.5
5

0.85 60.
5

0.738 0.495

B. Comparative Analysis and Statistical Validation

Fig. 1. Performance Comparison: DPSOM vs. No-Feedback Baseline

The performance of DPSOM was benchmarked against a
No-Feedback Baseline (NFB) model that assumes a static
policy environment. By 2022, DPSOM achieved a HAMS
Index of 0.738, whereas the NFB model reached 0.495,
corresponding to a 49.1% improvement in absolute HAMS
performance. This gain is attributed to the adaptive feedback
mechanism embedded in the HIF control loop.

To statistically validate the performance difference, a
paired-sample t-test was conducted using the annual HAMS
values from 2012 to 2022. The analysis produced a test
statistic of t = 15.82 with p < 0.001, allowing rejection of the
null hypothesis of no difference and confirming the
effectiveness of the HIF algorithm.
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In addition, the model exhibited a strong fit to observed
data, achieving R² = 0.985 and a Root Mean Square Error
(RMSE) = 0.012, indicating that the DPSOM formulation
captures the system ’ s non-linear dynamics with high
accuracy (Figure 1).

C. Ablation Study and Sensitivity Analysis
An ablation study was conducted by fixing the policy

input vector I at its 2010 baseline value throughout the entire
simulation period. Under this “ no-policy-adaptation ”
condition, the model produced a final HAMS Index of 0.380
in 2022. Compared with the full DPSOM outcome (0.738),
this represents a 94.2% difference in HAMS performance,
indicating that the policy input vector I is the most critical
driver of the synergistic performance gain enabled by the
framework.

In addition, a sensitivity analysis was performed on the
health weighting factor ω , varying it from 0.2 to 0.8. The
results show that while the absolute HAMS values change
with ω , the performance advantage of DPSOM over the
NFB baseline remains consistently large across all tested
values. This suggests that the observed synergistic gain is not
a numerical artifact of parameter choice, but rather a
structural consequence of the DPSOM closed-loop feedback
mechanism.

V. ANALYSIS AND DISCUSSION

The 49.1% performance gain over the NFB baseline
supports the core engineering claim of this study: achieving a
sustainable transport transition is fundamentally an adaptive
control problem, not a one-time planning exercise. Within
DPSOM, the HIF algorithm functions as a macro-level
Proportional–Integral (PI) controller for the policy regime.
The policy trigger signal ��(�) acts as the error signal, and
the controller ’ s “ integral ” behavior is reflected in
cumulative adjustments to key policy levers (e.g.,
incremental increases in ������). to reduce deviation from
the target HAMS trajectory. The two-year lag (� = 2)
provides a realistic representation of institutional inertia in
budgeting and planning cycles, allowing the control
mechanism to operate on the correct governance time scale.

The empirical trajectory also aligns with the theoretical
implications of the Lagrange framework (Section 3.2). In
particular, the sharp increase in policy investment �� during
Phase II (2012 – 2015) can be interpreted as a rational
response to the high marginal return ��/��� observed
during the initial public bicycle system (PBS) deployment in
Phase I. In other words, even under heuristic adjustment
rules, the observed policy dynamics behave as though the
system is seeking to maximize the HAMS Index under a
budget constraint — supporting the model’ s descriptive
validity.

Beyond long-horizon planning, DPSOM also has
practical implications for real-time infrastructure
management. If the HAMS Index is embedded into a “City
Brain”–style operational dashboard, decision-makers can
continuously visualize the network ’ s health-promoting
capacity. This enables dynamic operational interventions—
such as adjusting signal priority to favor public transport,
cycling, and walking flows during peak periods— thereby

extending the adaptive control concept from the strategic
policy level to more granular operational control.

Finally, scalability is a notable technical advantage of
DPSOM. The framework is designed so that its key
parameters can be recalibrated for other cities using local
statistical and operational data, making it transferable across
urban contexts while preserving the core feedback-loop
structure that drives the observed synergistic gains.

VI. CONCLUSION
This study developed and validated the Design–Policy

Synergy Optimization Model (DPSOM) as a novel, data-
driven framework for institutional innovation in healthy and
sustainable urban transport transitions. By formalizing the
transition process as a constrained optimization problem and
solving it through the proposed Heuristic Iterative Feedback
(HIF) algorithm, the study provides a practical engineering
solution to key shortcomings in existing transition models—
particularly the lack of replicable decision logic and limited
capacity for closed-loop optimization.

The 12-year Hangzhou case study offers strong empirical
support for the framework’s effectiveness. Results show a
49.1% performance gain over a static no-feedback baseline
and a 134% increase in the HAMS Index, indicating that
DPSOM can achieve synergistic system optimization by
explicitly coupling design evolution with adaptive policy
governance. In engineering terms, DPSOM delivers clear
value as a predictive and adaptive tool for evidence-based
decision-making in complex urban environments, supporting
both strategic planning and iterative policy refinement.

Looking forward, future research will focus on enhancing
the modeling and control core of DPSOM. Specifically, the
empirical estimation of the transfer function F will be
replaced with a Model Predictive Control (MPC) framework,
leveraging advanced machine learning methods to
dynamically learn F from data and optimize the policy
sequence I over a rolling planning horizon. This extension is
expected to further strengthen DPSOM ’ s predictive
accuracy and prescriptive capability, enabling more
responsive and robust governance of sustainable urban
mobility transitions.
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