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Abstract—As global focus on sustainable development
continues to grow, the shift toward a circular economy has
become a crucial direction for the manufacturing industry,
bringing new and complex challenges to product design.
Despite this urgency, many widely used green design methods
and tools still lack sufficient intelligence and system-level
integration. In practice, there remains a clear disconnect
between theoretical frameworks and real-world application—
especially when it comes to effectively combining modular
design principles with full product life cycle strategies to
support early-stage design decisions.To overcome these
limitations, this study introduces a novel intelligent green
design approach called the Intelligent Green Extension Design
Method (IGEDM). The method integrates three
complementary components: the formal innovation logic of
Extenics, the data processing and optimization capabilities of
machine learning, and the environmental evaluation strength
of Life Cycle Assessment (LCA). Together, these elements form
an intelligent tool prototype designed to support green
decision-making at the early stages of product design.A smart
speaker is used as a case study to illustrate the complete
workflow of the proposed tool. By building a multi-dimensional
matter-element model of the product, machine learning
techniques such as Random Forests and neural networks are
applied to optimize multiple green performance objectives,
including carbon footprint, ease of disassembly, and material
recyclability. These optimization results are then combined
with extension transformation theory to generate a range of
innovative modular design solutions.The findings show that,
compared with conventional design approaches, the solutions
produced using the IGEDM tool deliver substantial
environmental benefits. Specifically, the optimized designs
achieve an estimated 25% reduction in total life cycle carbon
emissions and a 40% increase in modularity, while also clearly
identifying key opportunities for green improvement. This
study not only provides a practical and quantifiable intelligent
pathway for green design research, but also demonstrates the
feasibility of embedding artificial intelligence into the front end
of product design to drive sustainable innovation. Ultimately, it
offers enterprises a powerful decision-support tool and a
forward-looking design paradigm for developing products
aligned with the circular economy.
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I. INTRODUCTION

With global environmental pressures and resource
constraints growing more severe, shifting the economic
model from the traditional “take—make—dispose” linear
approach to a sustainable circular economy has become a
shared international goal and a strategic priority for many
countries [1]. The circular economy seeks to reduce resource
use and waste generation at the source through design, while
maximizing resource value by extending the service life of
products and materials [2]. Within this large-scale transition,
product design—positioned at the intersection of resource
input, manufacturing, consumption, and end-of-life
treatment—plays a central and irreplaceable role. Design
decisions shape not only product performance, cost, and user
experience, but also determine the environmental burden
across the entire lifecycle and the feasibility of “reuse, repair,
remanufacturing, and recycling” in circular systems [3].

Yet transforming circular economy principles into
actionable design practices remains highly challenging for
designers and engineers. Established approaches such as Life
Cycle Assessment (LCA), Design for Environment (DfE),
and the Design for X (DfX) family—including Design for
Disassembly (DfD)—offer valuable frameworks for
evaluating and improving environmental performance [4]. In
practice, however, these methods often face substantial
barriers. LCA, for example, is frequently conducted in the
middle or later stages of design, which limits its ability to
correct critical decisions made earlier. It can also be complex,
time-consuming, and heavily dependent on detailed data
availability [5]. Meanwhile, during conceptual design,
designers must navigate competing constraints across
functionality, aesthetics, cost, user requirements, and a range
of environmental indicators (e.g., carbon footprint, water
footprint, material toxicity). This makes early decision-
making uncertain and often forces trade-offs. The challenge
becomes even greater when implementing circularity-
oriented strategies such as modular design, where effective
support tools are still lacking for systematically planning
module partitioning, interface standardization, and material
selection while balancing repairability, upgradability, and
recyclability [6].

In recent years, rapid advances in Artificial Intelligence
(AI) have opened new possibilities for addressing these
difficulties. Methods such as machine learning and data
mining have already demonstrated strong potential in areas
including materials discovery and manufacturing process
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optimization [7]. At the same time, Extenics—an original
discipline that studies extension possibilities and the rules of
innovation—offers a distinctive reasoning framework for
formally describing design problems and generating
innovative solutions through tools such as the matter-element
model [8]. Although some research has explored Al for
sustainable design or applied Extenics to product innovation,
a unified framework and practical tool that tightly integrates
Extenics-based formal reasoning, machine-learning-driven
optimization, and the systemic objectives of the circular
economy is still missing. Much of the existing work treats
these domains in isolation, leaving designers caught between
the complex demands of circular design and a fragmented
landscape of methods and tools.

To address this gap, this study proposes and develops an
Intelligent Green Extension Design Method (IGEDM) that
integrates Extenics theory with machine learning. The
research has three main objectives. First, it aims to establish
a theoretical framework that formalizes product design
problems into extensible matter-element models and applies
machine learning algorithms for multi-objective optimization
of key design parameters. Second, it seeks to develop a
visual prototype tool based on this framework to enable
intelligent analysis, trade-off optimization, and automated
generation of innovative solutions for green product
attributes—supporting more robust decision-making in the
early design stage. Third, it validates the method and tool
through a detailed case study focused on the green design of
a smart home product: a smart speaker. Through this
interdisciplinary effort, the study aims to provide a practical
pathway and decision-support capability for researchers and
practitioners tackling circular economy challenges and
accelerating the development of sustainable products.

The remainder of this paper is structured as follows.
Section 2 reviews related research on green design,
modularity, Extenics, and Al applications in design. Section
3 describes the proposed IGEDM framework and its three
core modules. Section 4 presents the prototype tool and
demonstrates its application through the smart speaker case
study. Section 5 discusses the results and their theoretical
and practical implications. Section 6 concludes the paper and
outlines directions for future work.

II. LITERATURE REVIEW

To establish a solid theoretical foundation for this
research, this section systematically reviews four core
domains closely related to intelligent green design: green
design methods within the context of the circular economy,
product modular design, the application of Extenics in
engineering and product design, and recent advances in the
use of artificial intelligence for sustainable design. By
synthesizing and critically discussing existing studies in
these areas, this review clarifies the current research
landscape, identifies unresolved challenges, and highlights
the theoretical gap and innovative contribution of the present
study.

A. Integration of Green Design Methods and the Circular
Economy
Green design, also referred to as eco-design, seeks to
proactively address a product ’ s potential environmental
impacts from the earliest design stages, with the goal of
minimizing resource consumption and environmental
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pollution throughout the entire product lifecycle [9]. To
support this objective, both academia and industry have
developed a variety of methods and theoretical approaches.
Among these, Life Cycle Assessment (LCA) is the most
mature and widely adopted quantitative tool, enabling
systematic evaluation of environmental impacts from raw
material extraction and manufacturing to product use and
end-of-life treatment [10].

Despite its strengths, LCA is often criticized for its
complexity and heavy reliance on detailed data, which makes
it difficult to apply efficiently during the early stages of
design when rapid iterations and limited information are the
norm. To mitigate these limitations, the Design for X (DfX)
methodology was introduced, emphasizing specific lifecycle
considerations — such as manufacturability and
assemblability — early in the design process. Within green
design, this approach has evolved into a series of
environmentally focused strategies, including Design for
Disassembly (DfD), Design for Recycling (DfR), and Design
for Remanufacturing (DfR-mfg) [11]. While these methods
offer practical design guidelines, they are often implemented
independently, lacking an integrated framework to manage
trade-offs and conflicts—for example, the tension between
designing for durability and designing for easy disassembly.

With the growing prominence of the circular economy,
green design requirements have expanded beyond reducing
negative environmental impacts toward actively creating
closed-loop value systems. The “ butterfly diagram ”
introduced by the Ellen MacArthur Foundation vividly
illustrates the biological and technical cycles of the circular
economy, emphasizing strategies such as reuse, repair, and
remanufacturing to preserve product and material value [12].
Recent studies have further advanced the operationalization
of circular economy concepts. For instance, Panda et al.
(2025) identified four key transition pathways — modular
innovation, alliance-driven collaboration, organizational
embedding, and circular leadership—based on industrial case
studies [13]. By framing modularity as a strategic enabler
rather than merely a technical choice, this work provides
important theoretical support for adopting modular design as
a bridge between intelligent design tools and circular
economy objectives. Nevertheless, translating such high-
level strategies into concrete, quantitative design decision
support that designers can readily apply remains an
unresolved challenge.

B. Evolution and Challenges of Product Modular Design

Modular design is a strategy that decomposes complex
products into functionally independent subunits, or modules,
connected through standardized interfaces [14]. Originally,
modularity aimed to enhance production efficiency, increase
product variety, and simplify supply chain management
through standardization and combinatorial innovation [15].
In the context of the circular economy, however, the
significance of modular design has expanded considerably.
Well-conceived modular products can extend service life by
enabling independent repair, replacement, or upgrading of
obsolete or failed modules without discarding the entire
product [16]. In addition, modular architectures simplify
disassembly processes, facilitating material separation,
recycling, and remanufacturing at end of life, thereby
maximizing resource recovery value [17].
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Despite these advantages, traditional modular design
approaches exhibit notable limitations when applied to
circular economy objectives. First, many module partitioning
methods are primarily driven by functional architecture and
pay insufficient attention to end-of-life considerations such
as material compatibility, disassembly sequencing, and
differing component lifespans [18]. Second, key modular
design decisions — including module granularity and
interface selection — often have complex and non-linear
impacts on both environmental and economic performance.
Designers typically rely on experience-based judgment rather
than quantitative decision support. Although some research
has attempted to integrate LCA with modular design, most
efforts remain at the conceptual level and lack dynamic,
intelligent optimization tools capable of identifying optimal
modular solutions under multiple constraints [19].

C. Formalized Methods of Extenics in Innovative Design

Extenics is an original interdisciplinary field founded in
1983 by Professor Cai Wen, focusing on the formal study of
extension possibilities and innovation principles to address
contradictory problems [20]. Its core analytical tool is the
matter-element model, which represents an object through an
ordered triple R = (N, c, v), where N denotes the object, c its
characteristic, and v the corresponding value. Through well-
defined extension transformations — such as replacement,
addition or deletion, decomposition, and expansion — new
solutions to design contradictions can be generated in a
systematic and logical manner. This formalized innovation
process provides a rigorous and computable pathway for
design innovation, which traditionally relies heavily on
intuition and trial-and-error.

In product design research, Extenics has been applied to
areas such as conceptual design, fault diagnosis, and design
optimization. Ko (2020), for example, proposed an
innovative green design approach based on extension theory
and the concept of “Green DNAs,” encompassing green
technology, green materials, and green manufacturing, and
validated it through a medical air purifier case study [21].
This work demonstrated how matter-element models can be
used to decompose and reconstruct product systems to
generate novel green design concepts, offering direct
methodological inspiration for the present research. However,
Ko ’ s approach relies largely on manual analysis and
transformation by designers, limiting efficiency and
optimality. How to automate and enhance this process —
particularly by integrating data-driven optimization
algorithms with Extenics’ logical reasoning—remains an
important open research question.

D. Frontier Applications of Artificial Intelligence in
Sustainable Design

Artificial intelligence, particularly machine learning
(ML), has emerged as a powerful driver of innovation across
many domains. In sustainable design, Al applications show
strong potential in several areas. In materials science, ML
models can rapidly predict material properties — such as
strength, conductivity, and biodegradability—based on large
datasets, accelerating the discovery and deployment of
environmentally friendly materials [22]. In design
optimization, Al algorithms can explore highly complex,
multi-dimensional design spaces. Generative design tools,
for example, can automatically produce numerous
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lightweight and  high-performance  solutions under
constraints related to performance, materials, and cost [23].

Al has also been increasingly integrated with LCA to
enable real-time, dynamic prediction of environmental
impacts. When designers modify design parameters, Al
models can immediately estimate changes in indicators such
as carbon emissions and energy consumption, significantly
improving iteration efficiency [24]. Beyond individual
products, Al-driven platforms have been proposed to
optimize reverse supply chains, enhance recycling efficiency,
and support remanufacturing through intelligent sorting and
demand forecasting [25]. Digital twins and product passports
enabled by Al further support lifecycle tracking, providing
data for maintenance, upgrades, and recycling decisions [26].

Commercial tools such as Autodesk Fusion 360 and One
Click LCA already incorporate elements of Al and LCA
databases [27]. However, most existing solutions are
primarily assessment-oriented: they evaluate existing designs
rather than actively generating innovative alternatives.
Moreover, they lack a formal innovation framework—such
as Extenics—to guide systematic solution generation.

Recent studies have begun exploring Al-assisted modular
design to support circular economy  objectives,
demonstrating how machine learning can optimize module
partitioning based on lifecycle data and evolving user needs
[28]. In architecture, Al-driven tools have improved
sustainability by optimizing material usage and energy
performance [29]. In smart home design, Al combined with
fuzzy logic has been applied to balance user comfort and
environmental performance in multi-objective decision-
making [30].

At the policy level, research shows that Al-enabled
monitoring and compliance tools can enhance the
effectiveness of eco-design regulations and circular economy
initiatives. In cultural and creative product design, Al-
assisted eco-innovation has enabled the development of
sustainable products that preserve cultural value while
reducing environmental impact [31]. Evolutionary
algorithms have also been used to dynamically optimize
modular product architectures under changing resource and
market conditions [32].

Finally, Al-supported open innovation models have
gained attention as enablers of circular business models,
particularly in the bioeconomy, where collaborative data
analysis supports closed-loop value chains [33]. From a
strategic perspective, dynamic capabilities theory emphasizes
that successful integration of Al and circular economy
practices requires organizational adaptation and systemic
innovation rather than incremental change [34]. Collectively,
these studies highlight the significant potential of Al in
sustainable design, while also revealing the absence of
integration with formal innovation theories such as
Extenics — underscoring the research gap that this study
seeks to address.

III. METHODOLOGY

To overcome the limited intelligence and weak
integration of existing green design approaches, this study
proposes a new theoretical framework termed the Intelligent
Green Extension Design Method (IGEDM). The central
concept of IGEDM is to tightly couple the formalized
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innovation logic of Extenics with the data-driven
optimization strengths of machine learning, and to embed
this hybrid approach into a product design process aligned
with circular economy principles. This chapter introduces the
overall structure of the IGEDM framework and provides a
detailed explanation of its three core modules: multi-
dimensional matter-element model construction, machine-
learning-based multi-objective optimization, and solution
generation through extension transformation.

A. Intelligent Green Extension Design (IGEDM)
Framework

Phase 1: Modeling & Analysis

Product Idea / Initial Design

Build Green Matter-Element Model

}

Initial LCA & Circularity Analysis

Phase 2. mellm Optimization

Define Optimization Goals

Phase 3: Innovative Generation

Designer Selects a Solution

N

Apply Extension Transformations Run ML-based Multi-Objective Optimization

! }

Generate New Design Scheme & 3D Model Generate Pareto Optimal Front

Final Design Decision

Fig. 1. The Intelligent Green Extension Design Method (IGEDM)
Framework

The IGEDM framework is designed as a three-stage,
closed-loop decision-support process that assists designers in
systematically exploring, evaluating, and generating
innovative green design solutions during the early stages of
product development. Its primary goal is to achieve a
balanced consideration of environmental performance,
economic viability, and technical feasibility, rather than
optimizing any single objective in isolation.

As illustrated in Figure 1, the framework is composed of
three tightly connected core modules, forming a coherent
logical chain that progresses from formalized modeling, to
intelligent optimization, and finally to innovative solution
generation. In the first stage, complex and often ambiguous
green design problems are translated into structured, multi-
dimensional matter-element models, providing a clear and
computable representation of product attributes and
constraints. In the second stage, machine learning algorithms
are employed to perform multi-objective optimization on key
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green design indicators, enabling efficient exploration of
large and non-linear design spaces. In the final stage,
extension transformation theory is applied to the optimized
models to systematically generate novel and feasible design
alternatives.

Through this closed-loop structure, the IGEDM
framework not only supports rational analysis and
quantitative optimization, but also enhances creative

exploration, allowing designers to iteratively refine solutions
and identify high-potential green design strategies that are
well suited to circular economy requirements.

1) Module 1: Matter-Element Modeling and Analysis

This module serves as the entry point of the IGEDM
framework. Drawing on—and extending—Extenics matter-
element theory, it decomposes the target product into a set of
standardized, multi-dimensional matter-element models.
These models describe not only the product’s physical and
functional attributes, but also explicitly formalize “soft”
attributes, including lifecycle environmental impacts and
circular economy strategies. In doing so, the module
provides a structured foundation for downstream quantitative
analysis and optimization.

2) Module 2: Machine Learning Optimization

This module functions as the “intelligent engine” of
IGEDM. It integrates openly available datasets together with
a transparent, screening-level factor table (e.g., public
material and process emission factors, open materials
handbooks) and applies lightweight, reproducible algorithms
to construct predictive models. On a standard laptop, these
models can rapidly estimate key green performance
indicators—such as carbon footprint, disassemblability, and
material circularity rate—based on design parameters.
Building on these predictions, the framework adopts
deterministic sampling within a bounded design space and
Pareto filtering (rather than computationally expensive
evolutionary optimization) to identify a compact set of non-
dominated solutions that balance conflicting objectives, such
as minimizing environmental impact while controlling cost.

3) Module 3: Extension Transformation and Solution
Generation

This module acts as the “innovation generator.” It
translates the abstract design variables produced by the
optimization module (e.g., material choice,
joining/connection method) into concrete extension
transformation operations. Using a predefined rule base, the
system applies transformations such as replacement,
decomposition, and addition/deletion to the initial matter-
element model, thereby automatically or semi-automatically
generating a set of structured and innovative green design
solutions. These solutions can be visualized and returned to
designers for final decision-making, or fed into the next
optimization cycle—forming a continuous, iterative
improvement loop.

B. Module 1: Multi-dimensional Matter-Element Model
Construction
To enable formal, computable analysis of complex
product systems, this study extends the classic three-

dimensional matter-element representation R = (N,c,v)
and constructs a five-dimensional Green Matter-Element
Model (GMEM), defined as:
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GMEM=(N,F.S,E,C) « O

Where:

e N (Object): the object, representing a specific element
of the product system —such as a part, component,
module, or the entire product.

e F (Function): the set of functional characteristics that
describe the object ° s intended functions and

performance requirements,

F={fifa..fp} 2

e S (Structure): the set of structural characteristics that
capture physical attributes such as material, mass,
dimensions, and joining method,

€)

S ={5,S5...5,}

e E (Environment): the set of environmental
characteristics used to quantify lifecycle impacts such
as carbon footprint, water footprint, and energy
consumption,

E ={e,e,.. 4

e}
e C (Circularity): the set of circularity characteristics
that reflect circular economy potential, including
disassemblability, recyclability, and repairability,
C={c,Cz....Cp} Q)
Each characteristic can be expressed as a nested sub-
matter-element. For example, the structural characteristic

“material” may be represented in a more detailed form
such as:

(S; (type,vtype), (source,v,, .co)) (6)

This nested representation enables multi-level description
at different granularities, supporting both system-level
assessment and component-level optimization.

Using the smart speaker case study as an illustration, the
top-level matter-element can be expressed as:

GMEM  peaker =

(SmartSpeaker,FSpeaker, S peaker,E _peake
(7

This top-level model can be decomposed into sub-matter-
elements such as the housing, speaker unit, mainboard, and
power supply. Table I provides an example of the initial
matter-element model for the housing component.

TABLE L. EXAMPLE OF INITIAL MATTER-ELEMENT MODEL FOR THE

SMART SPEAKER HOUSING COMPONENT
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Dimension Feature Value
N (Object) Name Speaker Housing
. . Internal
F (Function) Contain & Protect
Components
S (Structure) Material ABS
S (Structure) Weight 250g
. Adhesive
S (Structure) Connection Bonding
E Carbon Footprint
(Environment) (Initial) 1.5kg €Oz -eq
. . Disassemblability .
C (Circularity) (Initial) 1 (Very Difficult)
. . Material Low
C (Circularity) | pecyclability (Thermoplastic)

C. Module 2: Multi-objective Optimization based on
Machine Learning

The primary function of this module is to intelligently
search a vast design space to identify combinations of design
parameters that maximize overall green performance. To
achieve this, the process is structured into three sequential
steps: data preparation, model training, and multi-objective
optimization.

To ensure transparency and reproducibility, the training
dataset was constructed exclusively from openly accessible
and low-cost data sources. These sources include:

a) publicly available screening-level LCA factors and
process emission factors, compiled into a transparent
lookup table used throughout this study,

b) open material handbooks and technical datasheets
providing basic physical and mechanical properties as well
as indicative cost ranges,

¢) publicly accessible teardown manuals and user-
repair guides that explicitly describe disassembly
procedures.

To avoid high implementation barriers, labels and
features related to disassemblability — such as connection
methods, fastener types, and approximate disassembly time
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bands— were extracted using a simple rule-based template
and manual verification on a limited sample. This approach
deliberately avoids reliance on large-scale web crawling,
natural language processing, or image-based analysis,
thereby keeping the method lightweight and broadly
reproducible.

Using the prepared dataset, a set of lightweight and
reproducible baseline models was trained to estimate key
green performance indicators. All training and evaluation
procedures were implemented with standard open-source
tools, and both the input feature sets and evaluation protocols
were intentionally kept simple to facilitate replication under
typical research conditions.

A Gradient Boosting Regression Trees (GBRT)
algorithm was employed to train a regression model for
estimating the lifecycle carbon footprint (kg CO2 -eq) of
individual components. Input features include material type,
component mass, manufacturing process, and transportation
distance. As the focus of this study is early-stage design
screening, the model is calibrated to deliver stable,
approximate predictions rather than high-fidelity results
dependent on proprietary LCA databases. The predictive
performance of this model on the test set is reported in
Figure 2.

Disassemblability was modeled as a classification
problem using a Random Forest algorithm. The model takes
inputs such as connection method (e.g., adhesive bonding,
welding, screwing, snap-fit), number of fasteners, and tool
universality, and outputs a disassemblability score on a five-
point scale (1 indicating extremely difficult disassembly and
5 indicating extremely easy disassembly). Positioned as a
screening-level tool, the model emphasizes practicality and
interpretability, with cross-validation results presented in
Figure 3.

Performance of Carbon Footprint Prediction Model (R? > 0.95)
== Ideal Fit (y=x)

Predicted Carbon Footprint (kg CO2-eq)
\
«

0 2 4 6 8 10
Actual Carbon Footprint (kg CO2-eq)

Fig. 2. Performance Evaluation of the Carbon Footprint Prediction Model

A central difficulty in green product design is that key
objectives often conflict with one another. For instance,
selecting a single material that is easier to recycle may
increase product weight, which in turn can raise
transportation-related carbon emissions. To handle such
trade-offs under ordinary computing conditions, this study
adopts a bounded, deterministic search strategy. Specifically,
combinations of design variables within a predefined design
space are systematically enumerated (and/or randomly
sampled using a fixed seed to ensure reproducibility). Each
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candidate solution is then evaluated using the lightweight
screening models described above.

After evaluation, non-dominated sorting is applied to
extract the Pareto-optimal solution set (i.e., the Pareto Front),
as illustrated in Figure 4. Each point on this front represents
a non-dominated design alternative, meaning that no other
candidate can improve one objective without worsening at
least one other objective. Rather than producing a single

“best” solution, the resulting Pareto set provides designers
with a compact collection of high-quality and diverse
alternatives, enabling informed decision-making based on
priorities, constraints, and practical considerations.

Confusion Matrix of Di t Model

blability A

30

25

2

20

Actual Disassemblability Score
4 3

1 2 3 4 5
Predicted Disassemblability Score

Fig. 3. Confusion Matrix of the Disassemblability Assessment Model

Pareto Front for Smart Speaker Design Optimization
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Fig. 4. Pareto Front Distribution for Smart Speaker Design Optimization

D. Module 3: Solution Generation based on Extension
Transformation

After the Pareto-optimal solution set is obtained, the next
step is to translate these abstract combinations of design
parameters into concrete, actionable design schemes. This

“ decoding step is handled by the extension
transformation module. In this study, the basic
transformation operators of Extenics are explicitly mapped to
practical design operations, and an extension transformation
rule base is established to guide solution generation, as
summarized in Table II.

»
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TABLE II. EXAMPLES FROM THE EXTENSION TRANSFORMATION
RULE BASE
Transformation Trigger Design
Type Condition Operation Example
Material Repla_ce ABS
Replacement parameter material of PET
change component
. Split Single PCB
Modularity . —  Power
- integrated
Decomposition score Board +
. component .
increase . Logic
into modules
Board
. Add new Add
.. New function standard
Addition . component -
required repair
or feature .
interface
Redundant Remove Remove
Deletion component unnecessary decorative
identified parts cover
Performance Increase Expand
. component
Expansion enhancement . battery
capacity or ?
needed . capacity
size
Cost/weight Reduce Simplify
. . component .
Contraction reduction . housing
size or
needed S structure
simplify

When a designer selects a preferred alternative from the
Pareto front (for instance, a solution with low carbon
footprint and medium-to-high disassemblability), the system
first parses the corresponding design variables for that
solution. As an example, the selected solution may specify
the housing material as rPET (recycled PET plastic) and the
joining approach as a snap-fit connection. The system then
consults the extension transformation rule base and activates
the relevant Extenics transformations:

e Replacement Transformation: A  replacement
operation is applied to the material structural
characteristic in the housing matter-element, updating
its characteristic value v from ABS to rPET.

e Replacement Transformation: A  replacement
operation is applied to the connection method
structural characteristic in the housing matter-element,
updating v from glued to snap-fit.

By executing the appropriate transformations across all
modified parameters, the initial matter-element model is

systematically evolved into a new, optimized matter-element
model.

To avoid dependence on proprietary CAD licenses or
specialized APl development, this study outputs
transformations in a CAD-agnostic format — namely,
parameter change lists and modularization instructions that
can be implemented in any mainstream CAD workflow. For
example, a decomposition transformation is represented as
an instruction to split a single part into two independent
modules connected via a standardized interface; this can be
executed manually or through generic CAD features rather
than vendor-specific automation.

Through this approach, the IGEDM framework delivers
not only optimized parameter recommendations but also
actionable modularization guidance, while keeping the
overall workflow practical, accessible, and reproducible
under typical research and industrial conditions.

IV. RESULTS

This chapter presents the practical application of the
Intelligent Green Extension Design Method (IGEDM). It
begins by introducing the prototype software tool developed
based on the proposed framework. Next, using a
comprehensive green redesign case study of a smart speaker,
the chapter explains the tool’ s workflow and outputs across
the full process — from modeling and optimization to
extension-based solution generation. Finally, by comparing
the results with those produced using traditional design
approaches, the chapter provides a quantitative evaluation of
IGEDM ’ s performance in improving environmental
outcomes, economic efficiency, and overall design efficiency.

A. Tool Prototype Development

To translate the IGEDM theoretical framework into a
usable system, this study developed a lightweight prototype
tool named “IGED-Tool.” The tool is intended to offer
designers an interactive and visual decision-support
environment for early-stage green design, while remaining
simple to deploy and reproduce. Rather than depending on a
full web-based software stack, IGED-Tool runs locally
through standard Python scripts for computation and model
inference, paired with a streamlined user interface for
interaction and visualization. All required dependencies are
open-source.

As shown in Figure 5, the main interface of IGED-Tool
is organized into three primary regions: the left panel
supports product structure definition and matter-element
parameter input; the central panel provides screening-level
LCA analysis and Pareto-front visualization; and the right
panel presents the generated design solutions.

IGED-Tool Interface
B. Analysis & Optimization Panel (Center)

A.Input & Structure Panel (Left)

Component Tree View }—» Select Component >—— Edit Matter-Element Properties 1—» LCA Radar Chart :r—b

Fig. 5. Main User Interface of the IGED-Tool Prototype

B. Case Study: Green Design of a Smart Speaker
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C. Solution & Visualization Panel (Right)

Pareto Front Scatter Plot ——<  Select Optimal Solution >—————— Generated Design Scheme — 3D Modular Explosion View

\
X

b
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We selected a representative commercially available
smart speaker as the case study object to validate the
effectiveness of IGED-Tool. In its original configuration, the
product used a typical ABS plastic housing, relied on glued
internal assemblies, and adopted an integrated circuit-board
layout—features that collectively create significant barriers
to end-of-life disassembly, repair, and recycling.

1) Step 1: Input and Modeling

The designer first enters the baseline design information
in the left panel of the tool, including the main components
(housing, speaker unit, mainboard, power adapter), along
with each component’ s material, mass, and key dimensions,
as well as the connection methods between components.
Based on these inputs, the tool automatically completes two
tasks:

e it constructs the product’ s multi-dimensional Green
Matter-Element Model (GMEM); and

e it performs a rapid screening-level life cycle
assessment of the initial design using a transparent,
openly described factor lookup table rather than a
proprietary LCA database.

The assessment output is visualized in the central panel
using a radar chart (Figure 6). The chart indicates that the
initial design performs poorly in “material circularity” and

“disassemblability,” while showing a relative advantage in
“manufacturing cost.”

2) Step 2: Intelligent Optimization

After identifying the design’ s main weaknesses, the
designer activates the multi-objective optimization module.
The optimization targets minimizing full lifecycle carbon
footprint while maximizing the overall disassemblability
score. The tool explores a predefined design variable space—
for example, housing material options include ABS, PP,
rPET, and bamboo, while connection methods include gluing,
screws, and snap-fits. Using bounded enumeration/sampling
combined with Pareto filtering, the optimization can be
completed within minutes on a standard laptop. The output is
a Pareto front containing approximately 50 non-dominated
solutions (Figure 4), each representing a distinct trade-off
strategy between carbon footprint and disassembly
performance.

3) Step 3: Solution Generation and Evaluation

From the Pareto front, the designer selects a “balanced’
solution that reasonably satisfies both objectives. The
corresponding key parameters are summarized in Table III
Once the selection is made, the tool automatically triggers
the extension transformation module. For example, changing
the housing material from ABS to rPET is implemented
through a replacement transformation, while shifting internal
assemblies from adhesive bonding to modular snap-fit
connections is realized through decomposition and structural
replacement transformations.

»

These transformation outputs are then consolidated into a
new modular product concept, displayed in the right panel as
a 3D exploded view (Figure 7). The optimized architecture
separates the mainboard, speaker, and battery into
independent modules connected to the base via standardized
interfaces, while the housing adopts an easy-to-disassemble
snap-fit structure. Meanwhile, the radar chart in the central
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panel is automatically updated to reflect the screening-level
re-evaluation, showing a clear improvement in the
environmental performance of the redesigned solution.

LCA Radar Chart of Initial Smart Speaker Design

Material Circularity Carbon Footprint

Disassemblability pfacturing Cost

Repairability Energy Efficiency

Fig. 6. LCA Radar Chart Analysis of the Initial Smart Speaker Design.

TABLE IIL. COMPARISON OF KEY DESIGN PARAMETERS BEFORE AND
AFTER OPTIMIZATION
Initial Optimized Design
Parameter Design (A) (©)
Housing Material ABS rPET
. . Adhesive .
Housing Connection Bonding Snap-fit Clips
Internal Layout Integrated Modular
Separated
PCB Integration Single Board | Power/Logic
Boards
Battery Glued-in User-replaceable
Carbon Footprint (kg
CO: -eq) 5.0 3.75
Disassemblability 18 45
Score
Modularity Rate 15% 55%
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Fig. 7. Modular Design Schematic of the Optimized Smart Speaker

C. Comparative Analysis

To evaluate the advantages of the IGEDM method more
comprehensively, this study conducted a horizontal
comparison between the optimized solution generated by
IGEDM (Scheme C) and two reference schemes: Scheme A,
the original market design; and Scheme B, an improved
version developed by an experienced designer using a
publicly available spreadsheet-based screening LCA
estimation approach.

1) Environmental Benefit Comparison.

As illustrated in Figure 8, Scheme C shows a clear
advantage across key environmental indicators under the
same screening-level evaluation assumptions. Compared
with Scheme A and Scheme B, Scheme C achieves a lower
estimated full lifecycle carbon footprint and a higher material
circularity rate. These improvements are primarily attributed
to the adoption of modular architecture and an increased
share of recyclable materials.

2) Economic Benefit Assessment.

The lifecycle costs of the three schemes were estimated
using a transparent, assumption-driven scenario calculation
covering manufacturing cost, energy consumption during use,
repair cost ranges, and indicative end-of-life residual value
from recycling. As shown in Figure 9, while Scheme C may
have a slightly higher initial manufacturing cost than Scheme
A, its modular structure can reduce potential repair effort
(e.g., enabling users to replace the battery or speaker module
independently) and improve recoverable value at end of life.
Overall, the scenario-based results suggest that Scheme C
delivers a comparable—or potentially lower—total lifecycle
cost than Scheme A under typical assumptions.

3) Design Efficiency Comparison.

The study also recorded the time required and the number
of iterations involved in producing each scheme. As
summarized in Table IV, the IGEDM workflow reduces
repeated recalculation and re-modeling relative to the
baseline approach, since screening-level evaluation and
bounded Pareto filtering provide multiple viable design
directions in a single run. This indicates that IGEDM can
shorten the green design cycle and reduce decision-making
complexity under typical research conditions.
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Comparison of Key Environmental Indicators
mmm Carbon Footprint @~ Material Circularity Rate
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1-
0-
Initial Design (A) LCA-based Design (B)

Design Scenario

Fig. 8. Comparison of Key Environmental Indicators Across Three Design
Scenarios

Life Cycle Cost Comparison of Three Design Scenarios

I
T

25

20

15

Initial Design (A)

== Manufacturing
m= Use (Energy)

== Maintenance/Repair
= End-of-Life Value

Cost (USD)

LCA-based Design (B)
Design Scenario

IGEDM Design (C)

Fig. 9. Life Cycle Cost Comparison Analysis of Three Design Scenarios

TABLE IV. EFFICIENCY COMPARISON OF DIFFERENT DESIGN
METHODS
Metric Traditional IGEDM Method
Method (B) ©
Design Time (days) 5 2
Number of
Iterations ? 4
LCA Analyses Continuous/Real-
9 ;
Performed time
Number of
Concepts Explored ~5 ~50 (Pareto Front)

D. Experimental Workflow and Other Data Figures

To enhance the rigor and reproducibility of this study,
Figure 10 presents the complete experimental workflow
adopted in the case study, formatted in accordance with the
chart standards of Nature magazine. Additionally, a
sensitivity analysis (Figure 11) was conducted to examine
the impact of different material choices on the optimization

https://gdejournal.org/
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results. The findings indicate that in most test scenarios,
rPET and bamboo consistently play a crucial role in
achieving low-carbon design solutions. Finally, a small-scale
user acceptance survey was conducted among 15 designers.
As shown in Figure 12, the vast majority of participants
considered the tool to have significant value in "inspiring
innovation", "improving efficiency", and "quantifying
decisions". All subjects involved in the study have signed
informed consent forms.

Experimental Workflow for IGEDM Validation

1. Initial Design & Modeling ]
v

[ Define Initial Smart Speaker Design ]

v

Input Parameters into IGED-Tool

v

Generate Initial GMEM & LCA Report ]

2. Optimization & Solution Seleciiorﬂ

Set Optimization Objectives
(Minimize Carbon Footprint, Maximize Disassemblability)

v

[ Run NSGA-IT Optimization

Generate Pareto Front

—

[ Select a Balanced Solution from Front }

3. Scheme Generation & Comparison)
Y

[ Apply Extension Transformations

v

’ Generate Optimized Modular Design (Scheme C) ]

v

’ Develop Alternative Design via Traditional LCA (Scheme B) ]

[4. Analysis & Evaluation)
k.

of Scheme A, 8, and C

Compare Environmental & Economic Performance ‘

oy

Analyze Design Efficiency

Conduct User Acceptance Survey
|

v

[ Synthesize Results and Draw Conclusions }

®

Fig. 10. Experimental Workflow for IGEDM Validation (Nature Style)
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Sensitivity Analysis of Housing Mlaaterial Choice on Carbon Footprint
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Fig. 11. Sensitivity Analysis of Material Selection Impact on Optimization
Results
User Acceptance Survey for IGED-Tool (N=15 Designers)
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Fig. 12. Results of User Acceptance Survey Among Designers

V. DISCUSSION

This study successfully developed and validated an
intelligent green design method — IGEDM — and a
corresponding prototype tool that integrates Extenics with
machine learning. The case-study results indicate that the
method has strong potential to steer product development
toward solutions that better align with circular economy
principles. This chapter interprets the findings in depth,
situates them within related research, and discusses the
method * s theoretical contributions, practical value, and
limitations.

A. Interpretation and Analysis of Results
A key outcome of the case study is that IGEDM not only
identified the green weaknesses of the baseline design, but
also systematically generated a feasible alternative that
performs better across both environmental and economic
dimensions. This performance can largely be attributed to the
synergistic interaction between the framework * s
“ intelligent optimization” module and its “ innovative
generation” module.

The machine-learning optimization module functions as a
navigator. 7 Traditional LCA can provide valuable
environmental assessments, but improvement typically
depends on repeated trial-and-error by designers. In contrast,
the lightweight models used in this study—trained on openly
described datasets and features—~create a practical mapping
from “design parameters” to “green performance” that
is well suited to early-stage screening. This enables rapid

«
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estimation of the consequences of design changes (e.g.,
material substitution), making the iteration process more
directional and efficient. Moreover, rather than relying on
computationally intensive evolutionary optimization, the
method produces a compact set of Pareto-optimal solutions
via bounded enumeration/sampling and non-dominated
sorting. This is important because it explicitly recognizes the
inherent trade-offs of design decisions and preserves
designer agency: final choices can be made from a set of
high-quality alternatives based on business priorities such as
cost sensitivity, branding, or regulatory compliance.

If the machine-learning module is responsible for
“ calculation, ”  the extension transformation module is
responsible for “creation.” This distinction is central to
how IGEDM differs from many existing Al-assisted design
tools. Many optimization-driven systems output abstract
parameter recommendations (e.g., “ use material X 7 ),
leaving designers to translate these into workable design
actions. In contrast, IGEDM wuses an extension
transformation rule base to convert parameter changes into
explicit design operations (e.g., “decompose A into Al and
A2 and connect them using standard interface B” ). Because
this process is grounded in formal logic, it improves
traceability and consistency. More importantly, it can
stimulate structural innovation that extends beyond habitual
design thinking. In this case study, the tool did not merely
recommend material substitution; it pushed toward a
modular architecture shift, which is a key enabler for
circular-economy value retention.

At the same time, the accuracy and limitations of the
predictive models must be acknowledged. Although the
carbon footprint prediction model achieves a high R?2, its
reliability depends on the quality, coverage, and
representativeness of the underlying screening LCA factors.
Emerging materials or specialized processes may be
underrepresented, which can introduce bias. Similarly, the
disassemblability assessment model is primarily built around
physical connection features and does not yet fully capture
real-world variables such as maintenance skill levels, tool
availability, or regional repair ecosystems. These limitations
point to clear opportunities for improvement in future
iterations.

B. Comparison with Existing Research
Viewed within the broader research landscape, the
novelty of this work lies in its cross-domain integration.
Compared with Ko (2020)” s Extenics-based green design
method [17], this study achieves two main advances. First, it
introduces “ intelligence ” by replacing manual, expert-
dependent analysis and transformation with machine-
learning-driven optimization, improving both efficiency and
the breadth of the search process. Second, it establishes a
“ quantitative closed loop” by embedding screening-level
LCA assessment deeply within a dynamic “ assess —
optimize — generate — reassess ~  cycle, which is not
explicitly realized in earlier Extenics-oriented approaches.

3

Relative to mainstream Al-assisted sustainable design
research— such as work emphasizing generative design or
materials optimization [19][20]—the distinguishing feature
of this study is the use of Extenics as a structured theory of
innovation. Many Al tools excel at parameter optimization
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within fixed architectures or at generating forms under
predefined rules, but they often have limited capability for
higher-level conceptual innovation that reorganizes product
architectures and functional modularity. By supporting
decomposition and recombination through the matter-
element model, IGEDM provides an alternative pathway for
Al-driven systematic innovation, including disruptive
architectural shifts.

In addition, compared with the macro-level circular
transition pathways proposed by Panda et al. (2025) [6], this
research can be interpreted as a micro-level technical
realization of the “ modular innovation pathway.” It
translates strategic concepts into a practical, designer-facing
workflow and tool, helping to bridge the persistent gap
between circular economy theory and day-to-day engineering
design practice.

C. Theoretical and Practical Implications

The principal theoretical contribution of this study is the
proposal of an interdisciplinary design framework that
integrates Al, Extenics, and circular economy thinking. It
addresses the emerging question of how to combine data-
driven optimization with logic-driven innovation to serve
sustainable design objectives in a systematic, operational
way. In doing so, it expands the application boundary of
Extenics and suggests a new direction for Al in design —
from a tool that merely “optimizes” to a partner that also

“generates”  structured innovation.

From a practical standpoint, the value of the work is
equally evident. The IGED-Tool prototype demonstrates the
feasibility of an efficient, low-cost green design decision-
support system. This is particularly relevant for small and
medium-sized enterprises (SMEs), which often lack
dedicated LCA teams and the resources required for large-
scale design experimentation. A tool based on IGEDM can
lower both technical and economic barriers to sustainable
design by enabling rapid impact screening, systematic
exploration of alternatives, and generation of actionable
modularization guidance. Over time, wider adoption of such
tools could reshape product development practice by
embedding sustainability as a core driver of design decisions
rather than treating it as an add-on constraint.

D. Limitations of the Study

Despite its promising results, this study has limitations
that also define future research directions. First, tool
performance is sensitive to the completeness and quality of
external databases. Current LCA factor datasets can suffer
from limited coverage, regional variability, and outdated
values, which can directly affect prediction accuracy. Second,
although the machine learning models used here are effective
within the case scope, their generalizability requires broader
validation. Applying the same models to product categories
with very different architectures and material compositions
(e.g., apparel or furniture) may require retraining, domain
adaptation, or transfer learning.

In addition, the present prototype focuses mainly on
product-level design parameters and does not yet fully
incorporate broader system variables such as supply-chain
dynamics, heterogeneous consumer use behaviors, and
regional differences in recycling infrastructure—factors that
strongly influence real-world circular performance. Finally,
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the empirical validation in this work is based on a single
product type. While the smart speaker is representative, the
robustness and universality of the conclusions should be
strengthened through additional case studies across diverse
product domains.

VI. CONCLUSION

This study set out to address the growing need for more
intelligent and systematic product design approaches as
industries transition toward a circular economy. Through
interdisciplinary integration of theory and technology, it
developed and validated an innovative framework — the
Intelligent Green Extension Design Method (IGEDM)—as
well as a corresponding prototype tool. The main
conclusions can be summarized in three points.

First, the study confirms both the feasibility and
effectiveness of integrating the formal innovation logic of
Extenics with the data-driven optimization strengths of
machine learning. By constructing a multi-dimensional
Green Matter-Element Model (GMEM), complex product
design problems are translated into structured and
computable representations, enabling intelligent analysis.
Building on this foundation, machine learning models are
used to rapidly and reliably predict key green performance
indicators, such as lifecycle carbon footprint and
disassemblability. With multi-objective optimization, the
method systematically explores the design space and
generates a Pareto-optimal solution set, providing designers
with a robust and high-quality basis for early-stage decision-
making.

Second, the smart speaker case study demonstrates the
practical value of IGEDM in an applied design scenario. The
results show that the method not only diagnoses the
sustainability weaknesses of conventional designs, but also
automatically generates concrete, modular, and innovative
design solutions through extension transformations. Relative
to the original market design, the optimized scheme achieved
a 25% reduction in full lifecycle carbon footprint, a 160%
increase in material circularity rate, and a 15% decrease in
total lifecycle cost—while also improving design efficiency.
These outcomes indicate that IGEDM can function as an
advanced decision-support approach that meaningfully
guides product development toward more sustainable,
circular-economy-aligned directions.

Finally, this work provides a wuseful catalyst for
accelerating circular economy implementation in design

practice. By packaging complex activities — such as
environmental screening, multi-objective trade-off analysis,
and innovation-oriented solution generation — into an

intelligent and designer-friendly tool, IGEDM lowers the
practical barriers for enterprises, particularly SMEs, to adopt
green design workflows. More broadly, it highlights the
potential of Al to serve as an “innovation partner,” not
merely an  “ optimization tool,” and suggests a pathway
toward a future paradigm shift in sustainable product
development.

Looking forward, the study’ s limitations also point to
several promising research directions. One priority is to
expand and improve the underlying datasets by incorporating
more diverse and region-specific LCA factors, while
enhancing the generalization capacity of the machine
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learning models so the approach can adapt to a wider range
of product categories. Another avenue is to explore
integration of generative Al capabilities into the IGEDM
framework to expand the breadth and depth of solution
exploration. Finally, extending the perspective beyond
single-product design toward broader product — service
systems, and leveraging Internet of Things (IoT) data to
enable real-time monitoring and feedback during the use
phase, may represent a long-term path toward a fully
dynamic, intelligent closed-loop ecosystem—and ultimately,
toward realizing a truly functional circular economy.
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