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Abstract—With the acceleration of urbanization and the
rise of large-scale industrial parks, commuter traffic pressure
is mounting, particularly the "last-mile" problem from public
transport hubs to final destinations, which has become a
critical bottleneck constraining urban mobility efficiency and
sustainable development. Existing last-mile solutions, such as
fixed-route shuttles, commonly suffer from service rigidity,
resource wastage, and supply-demand mismatch. To address
this challenge, this study proposes a new paradigm for last-
mile shuttle design based on dynamic data, aiming to enhance
service efficiency and user satisfaction through precision
matching and service optimization. Taking the Shenzhen High-
Tech Industrial Park as an empirical case, this research
constructs a three-stage integrated design framework utilizing
large-scale ride-hailing order data, Points of Interest (POI)
data, and built environment data. First, an improved DBSCAN
clustering algorithm and a spatio-temporal analysis model are
employed to accurately identify and predict dynamically
changing travel demands. Second, a Passenger-Stop-Vehicle
(PSV) three-level precision matching model is proposed to
achieve effective alignment between personalized demands and
service resources. Finally, a multi-objective optimization model
is formulated with the goals of minimizing operating costs,
minimizing total passenger travel time, and maximizing system
service coverage. An improved Genetic Algorithm (GA) is used
to coordinately optimize the shuttle stop layout, routes, and
schedules. Simulation experiments and comparative analysis
demonstrate that the proposed model, compared to the
traditional fixed-route model, can reduce average waiting
times by approximately 36.3%, decrease vehicle deadheading
rates by 25.4%, and improve overall operational profit by
96.3%. This research not only provides a data-driven,
intelligent solution for the last-mile transportation problem in
industrial parks but also offers theoretical support and
practical reference for building more efficient and resilient
urban public transport systems.
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1. INTRODUCTION

In recent decades, the spatial evolution of cities —
especially the interplay between suburbanization and
employment decentralization — has reshaped commuting
patterns and intensified peak-period travel demand in
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metropolitan areas [1].

Classical urban spatial structure theory further indicates
that industrial clustering and functional integration can
generate highly concentrated directional flows, placing
persistent pressure on urban transport systems and their
connecting links [2]. Within this context, last-mile mobility
(i.e., the connection from major transit hubs to final activity
locations such as workplaces or residences) is widely
regarded as a critical determinant of public transport
attractiveness and overall service quality. Inadequate
performance in this segment often aggravates car
dependence and related externalities, ultimately undermining
urban livability [3].

The last-mile problem is particularly pronounced in large
industrial parks, where extensive spatial scale and high
employment density induce tidal commuter flows.
Traditional solutions predominantly rely on fixed-route,
fixed-schedule shuttle services. Although such services can
meet basic commuting needs, their “ one-size-fits-all ”
operation struggles to adapt to heterogeneous and time-
varying demand, resulting in long waiting times, excessive
walking distances, and unstable travel times for passengers.
Meanwhile, operators lacking accurate demand awareness
may experience low vehicle utilization and high deadheading,
which increases operational costs and weakens service
sustainability.

Motivated by these challenges, this study aims to
construct a data-driven last-mile shuttle design and
optimization framework with a focus on integrating precision
matching and service optimization. Specifically, this research
seeks: (1) to build an end-to-end design pipeline that
transforms multi-source mobility data into a complete shuttle
plan (stops, routes, and schedules); (2) to propose a
Passenger — Stop — Vehicle (PSV) three-level precision
matching mechanism to better align service resources with
dynamic spatiotemporal demand; and (3) to develop a multi-
objective coordinated optimization model that jointly
improves passenger experience, operator cost-effectiveness,
and service coverage. A case study in the Shenzhen High-
Tech Industrial Park is conducted to validate the
effectiveness and practical value of the proposed framework
using anonymized ride-hailing travel data.
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The remainder of this paper is organized as follows:
Section 2 reviews relevant literature. Section 3 presents the
proposed methodology. Section 4 introduces the case study
and experimental design. Section 5 reports results and
analyses. Section 6 discusses implications. Section 7
concludes the paper and outlines future research directions.

II. LITERATURE REVIEW

To establish a solid theoretical foundation, this section
reviews the literature in three areas: (1) the challenges and
solution pathways for last-mile transportation systems; (2)
shuttle service design and optimization techniques; and (3)
the application of data-driven methods in public transport
planning and operations.

A. The Last-Mile Transportation System

Last-mile connectivity is widely recognized as a critical
factor affecting the effectiveness and attractiveness of public
transport systems, because it directly shapes passengers’
access/egress costs and perceived service quality [4]. From
the perspective of sustainable mobility, deficiencies in last-
mile service can reinforce private car dependency and its
negative  externalities, which  undermines broader
sustainability goals [S5]. Structural incentives, such as
parking-related factors, may further strengthen car-oriented
travel choices when last-mile services are weak [6]. In
response, shared collective transport — especially shuttle
services — has been regarded as a promising approach to
balance capacity, cost, and service quality for concentrated
commuting demand [7].

B. Shuttle Service Design and Optimization

With the rise of large-scale mobility data, researchers
have demonstrated that individual travel exhibits measurable
regularities, enabling demand characterization beyond
traditional surveys [8]. In public transport contexts, the
development of passenger flow forecasting has been
extensively surveyed, highlighting mainstream modeling
paradigms and challenges for operational decision-making
[9]. More broadly, data-intensive urban science emphasizes
that massive datasets can reshape how cities are understood
and managed, providing methodological support for data-
driven transport planning [10].

C. Data-Driven Public Transport Planning

Shuttle service design is typically formulated as a multi-
objective and multi-constraint combinatorial optimization
problem, often involving stop location, routing, and
scheduling. For stop location, classical accessibility and
coverage-oriented formulations aim to improve system
accessibility while expanding service coverage [11]. For
routing, many shuttle planning problems can be framed as
variants of the Vehicle Routing Problem (VRP), including
time-window and pickup-and-delivery extensions, which are
well known to be NP-hard and thus frequently solved using
heuristic or metaheuristic methods [12].

Beyond fixed-route services, last-mile solutions also
include non-motorized and individualized motorized options.
Bike sharing and cycling can serve short-distance
access/egress and may reduce car use under suitable
conditions, but their effectiveness is limited by context and
operational constraints [13]. Ride-hailing provides flexible
door-to-door mobility, yet large-scale adoption may increase
congestion and emissions and introduce broader policy
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concerns [14]. In practice, public transit planning and
operation also involve behavioral and operational
considerations that shape the feasibility of integrating last-
mile services into the wider transit system [15].

To better respond to dynamic and heterogeneous demand,
Demand Responsive Transit (DRT) has emerged as a flexible
supplement between fixed-route buses and taxi-like services
[16]. Classic dial-a-ride research has examined dynamic
request handling and routing decisions using approaches
such as dynamic programming, providing foundational
insights for responsive dispatching problems [17].
Meanwhile, recent reviews summarize multi-objective
optimization perspectives for smart-city public transport
route planning, emphasizing integrated design considerations
and practical constraints [18]. In addition, learning-
augmented optimization has gained attention as a way to
improve the control of local search and other heuristic
processes in large-scale combinatorial problems [19]. For
scheduling and frequency-setting,  simulation-based
approaches have been used to capture behavioral responses
and mode substitution effects under frequency adjustments,
offering more realistic evaluation for service planning [20].

D. Data-Driven Public Transport Planning in Practice

Data-driven public transport planning also benefits from
empirical spatiotemporal analyses of shared mobility
trajectories, which can help identify demand hotspots and
service gaps relevant to last-mile design [21]. Deep learning
methods have been proposed to improve passenger flow
prediction accuracy by incorporating spatial features,
supporting more informed operational adjustments [22].
Moreover, emerging ITS research discusses how sensing and
edge computing can support responsive and scalable
transport systems, while also outlining technical challenges
for real-world deployment [23].

In summary, existing studies provide valuable
foundations for last-mile solutions, shuttle optimization, and
data-driven planning. However, an important research gap
remains: a comprehensive end-to-end framework that
integrates dynamic demand discovery, precision supply —
demand matching, and systematic service optimization for
last-mile shuttle services.

III. PROBLEM FORMULATION AND MODELING

The core of this research is to design an efficient and
flexible last-mile shuttle service system for an industrial park.
This system must be capable of responding to dynamically
changing travel demands while ensuring service quality and
operational sustainability. To this end, we construct a three-
stage integrated design framework that covers the entire
process from demand discovery to service optimization. This
chapter will first formally describe the research problem and
then detail the model formulation for each stage of the
framework.

A. Problem Description

The last-mile shuttle service design problem can be
defined as follows: given a specific service area (an
industrial park), a major public transport hub (a metro
station), a set of potential passenger travel demands, and a
fleet of available shuttle resources (vehicles), how to
determine an optimal set of shuttle service plans—including
Stop Layout (S), Routes (R), and Schedules (T)—to achieve
predefined optimization objectives.
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This problem is characterized by:

Demand Dynamism: Passenger travel demand
exhibits high dynamism in both time and space, with
pronounced tidal phenomena during morning and
evening commuting peaks.

Multi-Objectivity: The service design must balance
multiple, often conflicting, objectives, including
passenger interests (reducing waiting and in-vehicle
time), operator interests (lowering operational costs),
and social benefits (expanding service coverage).

Complex Constraints: The design solution must
satisfy a series of real-world constraints, such as
vehicle capacity, passengers' maximum acceptable
walking distance and waiting time, and the physical
limitations of the road network.

Based on this, we formulate the problem as a multi-
objective combinatorial optimization problem, defined as

follows:
Inputs:
e Demand Point Set D: A set of all last-mile travel
demand points, D = {d 1, d 2, .., d n}. Each
demand point d i includes its geographical

coordinates, demand occurrence time t i, and the
number of people (usually 1).

Transport Hub H: The geographical location of the
main public transport hub within the service area.

Road Network G: G = (V, E), a graph representing
the road network in the service area, where V is the
set of nodes (intersections) and E is the set of edges
(road segments), with each edge associated with a
weight representing travel time or distance.

Vehicle Fleet K: K = {k 1, k 2, ..., k m}, a set of
available shuttle vehicles, each with the same
capacity Q.

Decision Variables:

Stop Set S: S={s_1,s 2, ..., s p}, a subset of actual
operating shuttle stops selected from a set of
candidate stops.

Route Set R: R = {r 1, r 2, ..., r_q}, a set of shuttle
routes. Each route r_j is an ordered sequence of nodes
consisting of the hub H and a subset of stops s_i.

Schedule Plan T: T= {t 1,t 2, ..., t q}, the timetable
of departure times corresponding to each route r_j.

Objectives:

Minimize Total Operating Cost (Z1): Primarily
proportional to the total travel distance or time of the
vehicles.

Minimize Total Passenger Travel Time (Z2): Includes
passengers' access time walking from demand points
to stops, waiting time at stops, and in-vehicle travel
time.

Maximize Service Coverage (Z3): The proportion of
successfully served travel demand points to the total
number of demand points.
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B. Research Framework

To systematically address the problem described above,
we propose a three-stage data-driven framework as shown in
Figure 1. This framework decomposes the complex design
problem into three logically sequential yet interconnected
modules: Dynamic Demand Discovery, Precision Supply-
Demand Matching, and Service Coordinated Optimization.

Fig. 1: Integrated Data-Driven Framework for Last-Mile Shuttle Service Design

Fig. 1. Integrated Data-Driven Framework for Last-Mile Shuttle Service

Design

Stage 1: Dynamic Demand Discovery and Prediction.
The goal of this stage is to extract and analyze the
dynamic spatio-temporal characteristics of last-mile
travel demand from raw, multi-source data. It begins
with data cleaning, standardization, and spatio-
temporal correlation. Then, it utilizes an improved
clustering algorithm to identify high-density demand
areas and analyzes their evolution patterns across
different time scales (hourly, daily, weekly),
providing precise demand inputs for the subsequent
service design.

Stage 2: Precision Supply-Demand Matching Model.
This stage acts as a bridge connecting "demand" and
"supply," aiming to establish an effective matching
relationship among passengers, stops, and vehicles.
We innovatively propose a "Passenger-Stop-Vehicle"
(PSV)  three-level matching model, which
decomposes the macroscopic service optimization
problem into microscopic matching decisions,
ensuring that service resources can precisely respond
to individualized travel needs.

Stage 3: Service Coordinated Optimization Model.
This is the core decision-making module of the
framework. Based on the matching relationships
established in the second stage, it constructs a multi-
objective optimization model. It then uses an
intelligent optimization algorithm (such as a Genetic
Algorithm) to perform an integrated, coordinated
optimization of the three key elements of the shuttle
service — stop layout, routes, and schedules — to
generate the final service plan.

C. Model Formulation

1) Dynamic Demand Discovery Model

Accurate demand discovery is the foundation for all
subsequent optimization. We adopt the following steps to
extract dynamic demand from raw data:

Data Preprocessing and Standardization: Raw ride-
hailing order data is first cleaned to remove abnormal and
missing records. The data is then converted into a standard
format including order ID, pickup time, drop-off time,
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pickup location (latitude/longitude), and drop-off location
(latitude/longitude), as shown in Table 1. Based on the
research scenario, we filter orders that end within the
industrial park during specific time windows (morning peak,
7:00-10:00) or start within the park during the evening peak
(17:00-20:00) to form the candidate dataset for last-mile
travel.

TABLE L. STANDARDIZED TRAVEL RECORD FIELDS USED IN THIS
STUDY
Field .
Name Type Description
user id String Anonymous unique user identifier
start Datetime Trip start time
time
end time Datetime Trip end time
ongin Double Origin longitude
lon
orlgltnila Double Origin latitude
dest_lon Double Destination longitude
dest lat Double Destination latitude
. Transportation mode (e.g. 'subway',
mode String P bike’ )( g. subway

Demand Hotspot Identification: To identify spatially
clustered demand areas, we employ the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN)
algorithm. Compared to algorithms like K-Means, which
require a predefined number of clusters, DBSCAN can
discover clusters of arbitrary shape and effectively identify
noise points (discrete demands), making it highly suitable for
handling spatially uneven travel demand points . DBSCAN
requires two parameters: eps and MinPts. We determine
them using a k-distance elbow method with k = MinPts, and
then fix the final values for the case study to eps = 250 m and
MinPts = 60. Distances are computed in meters after
projecting coordinates to a local metric coordinate system.
We also conduct a sensitivity check by varying eps in [200 m,
300 m] and MinPts in [40, 80] and confirm that the set of
major hotspots and downstream optimization conclusions
remain stable.

After the algorithm is executed, spatially dense travel
demand points are grouped into different clusters. The core
points of each cluster represent a high-frequency demand
"hotspot area." The centroids of these hotspots will serve as
candidate locations for subsequent stop placement.

Temporal Feature Analysis: For each identified demand
cluster, we further analyze its distribution patterns over time.
By counting the demand volume within each cluster during
different time slices (every 30 minutes), we can plot time-
series curves for each demand area. These curves clearly
reveal the periodicity, peak hours, and volatility of demand,

providing a critical basis for designing a dynamic
dispatching schedule.

2) Precision Supply-Demand Matching Model (PSV
Matching)

The precision matching model aims to establish the
connection that gets the "right people" (passengers) to the
"right place" (stop) at the "right time" to board the "right
vehicle" (trip). We decompose this into three levels(Figure 2):
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Fig. 2: Passenger-Stop-Vehicle (PSV) Three-Level Precision Matching Model

Fig. 2. Passenger-Stop-Vehicle (PSV) Three-Level Precision Matching
Model

e Level 1: Passenger-Stop (P-S) Matching. This level
matches each travel demand point d i to one or more
potential service stops. The matching principle is the
shortest walking distance. We set a maximum
acceptable walking distance, walk max (300 meters).
For each demand point d_i, we calculate its walking
distance to all candidate stops s_j and assign it to the
nearest stop within the walk max threshold. This step
aggregates discrete individual demands to candidate
stops, forming the demand volume for each stop at
different time slices.

e Level 2: Stop-Route (S-R) Matching. This level
combines the demand-laden candidate stops into
several shuttle routes. This is a variant of the classic
Traveling Salesperson Problem (TSP) or Vehicle
Routing Problem (VRP). The objective is to design a
set of routes that can connect multiple stops with the
highest efficiency. The quality of the match depends
on the total route length, the number of stops covered,
and the total demand served.

e Level 3: Route-Vehicle (R-V) Matching. This level
assigns appropriate vehicles and departure schedules
to the generated routes. The core of this match is to
dynamically adjust the service frequency based on the
demand at the stops along the route during different
time periods. For example, during the morning peak,
routes covering major residential areas to the park
should have a significantly higher frequency than
during off-peak hours.

The PSV matching model is not a standalone algorithm
but a logical framework that guides the establishment of the
subsequent optimization model. It deconstructs the complex
system optimization problem into three interconnected
matching links, making the optimization objectives clearer
and the model formulation more targeted.

3) Service Coordinated Optimization Model

Guided by the PSV matching framework, we construct a
multi-objective integer programming model to achieve the
coordinated optimization of stops, routes, and schedules. The
objective functions of the model are as follows:

a) Objective 1: Minimize Total Operating Cost (min
Zl)

Zi=c_v * S(EK) T k+cd* S(EK)DKk (1)
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where T k and D _k are the total operating time and total
travel distance of vehicle k, respectively. ¢ v and c_d are the
variable costs per unit of time (fuel, maintenance) and per
unit of distance, respectively.

b) Objective 2: Minimize Total Passenger Travel
Time (min Z2)

Z2=73 (ieD_s) (T_wait(i) + T_in_v ehicl e(i) + T_wal k(i))(2)

where D s is the set of successfully served demand
points. T wait(i) is the waiting time of passenger i at the stop,
T in_vehicle(i) is the in-vehicle time of passenger i, and
T walk(i) is the walking time of passenger i from the
demand point to the stop.

¢) Objective 3: Maximize Service Coverage (max Z3)

Z3=1D_sl/IDI (M

where |D_s| is the number of served demand points, and
|D| is the total number of demand points. A demand point is
considered "served" if there is a shuttle stop within its
maximum walking distance walk max.

Main Constraints:

e Stop Assignment Constraint: Each served demand
point must be assigned to one and only one stop.

e Route Continuity Constraint: Each route must start
from and return to the hub H.

e Vehicle Capacity Constraint: The number of
passengers on a vehicle must not exceed its maximum
capacity Q on any segment of the route.

e Maximum Waiting Time Constraint: The average or
maximum waiting time for passengers at a stop must
not exceed a preset threshold wait max.

o Service Time Window Constraint: Vehicles must
arrive at the respective stops to provide service within
the time windows of passenger demand.

Since this model is an NP-hard multi-objective
optimization problem, it is difficult to solve for an exact
solution within a reasonable time. Therefore, in the next
chapter, we will design a heuristic solution approach based
on an improved genetic algorithm to obtain high-quality
approximate optimal solutions.

IV. ALGORITHM DESIGN AND SOLUTION APPROACH

The multi-objective coordinated optimization model
constructed in the previous chapter is an NP-hard problem,
making it difficult to find an exact solution for large-scale
instances. Therefore, this chapter designs an efficient
heuristic algorithm to solve this problem. The overall
solution strategy follows a divide-and-conquer approach,
decomposing the complex coordinated optimization problem
into three sequential steps: Stop Layout Planning, Route and
Schedule Optimization, and Cost-Benefit Analysis. The
algorithm is carefully designed to ensure organic linkage
between these steps.

A. Overall Solution Procedure

The solution procedure is illustrated in Figure 3 and is
divided into the following three stages:
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Fig. 3: Overall Solution Procedure Flowchart

Fig. 3. Overall Solution Procedure Flowchart

Stop Layout Planning: The objective of this stage is to
determine the optimal set of shuttle stops from a vast number
of potential demand points. We first use the DBSCAN
algorithm mentioned in the previous chapter to identify
demand hotspots and use their centroids as candidate stops.
Then, we employ an improved K-Means clustering algorithm
with dynamic "split" and "merge" operations to iteratively
optimize the candidate stops, ultimately determining the
optimal number and location of the stops.

Route and Schedule Optimization: After determining the
stop layout, this stage aims to design the optimal driving
routes and dynamic departure timetables for the stops. We
design a Multi-Objective Genetic Algorithm (MOGA) based
on time-of-day demand. This algorithm divides the day into
multiple periods (morning peak, off-peak, evening peak) and,
based on the demand characteristics of each period,
simultaneously optimizes the vehicle routes and service
frequencies to minimize operating costs and passenger travel
time.

Cost-Benefit Analysis: Once a complete service plan
(stops, routes, schedules) is obtained, this stage constructs a
quantitative cost-benefit model to evaluate the economic
feasibility of the plan. Through simulated operations, we
calculate Key Performance Indicators (KPIs) such as total
revenue, total cost, and profit per passenger, providing data
support for final decision-making.

B. Stop Layout Planning Algorithm

The quality of the stop layout directly affects the service
coverage and passenger access convenience. Our proposed
improved K-Means algorithm aims to overcome the
drawback of traditional K-Means, which requires a preset K
value. Through an adaptive split-and-merge mechanism, it
finds a stop plan that best matches the spatial distribution of
demand. The algorithm flowchart is shown in Figure 4.
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Fig. 4: Improved K-Means Algorithm for Stop Layout Planning
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Fig. 4. Improved K-Means Algorithm for Stop Layout Planning

Initialization: The centroids of the demand hotspots
identified by DBSCAN clustering are used as the initial set
of candidate stops. An initial number of clusters, k, is set
(estimated based on total demand and average vehicle
capacity).

Iterative Optimization: The algorithm enters an iterative
loop until no more stops can be split or merged.

e Assignment: All travel demand points are assigned to
their nearest stop, forming k service clusters.

e Update: The centroid of each cluster is recalculated
and becomes the new stop location.

e Split and Merge Check: All stops (clusters) are
checked to determine if they meet the criteria for
splitting or merging.

Splitting Criterion: When the demand served by a stop is
too dispersed or the demand volume is too large, it should be
split to improve service precision and avoid stop congestion.
Splitting is triggered if either of the following conditions is
met:

e High Dispersion: The average walking distance
d avg from all demand points in a cluster to its
centroid exceeds a preset maximum acceptable
average walking distance d_max.

e Demand Overload: The total demand D peak of a
cluster during peak hours exceeds the service capacity
threshold of a single stop, o Q (where Q is vehicle
capacity and o is an overload factor, 1.5). If the
splitting condition is met, ak=2 K-Means algorithm is
performed on the demand points within that cluster,
and the two new centroids replace the original stop
centroid.

Merging Criterion: When two stops are geographically
too close and their combined demand is within a manageable
range, they should be merged to reduce redundant
construction and operational costs. Merging is triggered if all
of the following conditions are met:
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e Proximity: The distance dist(s i, s_j) between two
stop centroids s i and s j is less than a preset
minimum inter-stop distance dist_min.

e Unsaturated Demand: The sum of the total demand of
the two clusters during peak hours, D peak(i) +
D peak(j), does not exceed the service capacity
threshold B Q ( B is a merging factor, 1.2). If the
merging condition is met, the two stops are merged,
and the new stop location is the weighted average
center of the two clusters, with demand as the weight.

Termination: When no stops are split or merged in a full
iteration, the algorithm converges and outputs the final stop
layout plan.

C. Route and Schedule Optimization Algorithm

Once the stop layout is determined, the route and
schedule optimization problem can be modeled as a Multi-
Depot Vehicle Routing Problem with Time Windows and
Capacity Constraints (MDVRPTW). Given its complexity,
we use a Genetic Algorithm for the solution.

e Time-of-Day Strategy: To handle the dynamic
demand, the operating day is divided into several time
slices T slice (30-minute intervals). The GA is run
independently for each time slice, using the demand
data specific to that period. This approach allows the
service frequency and routes to adapt to demand
fluctuations throughout the day.

e Chromosome Encoding: An integer-based encoding
scheme based on a sequence of stops is used. A
chromosome represents a complete vehicle routing
plan. It is a sequence of stop numbers and delimiters
(0). For example, for 8 stops and 2 vehicles, a
chromosome could be [H, 3,5,1,H,0,H,2,8,6,4,7,
H]. Here, H represents the transport hub, and O is the
vehicle separator, indicating that the first vehicle
serves the route H-3-5-1-H, and the second vehicle
serves H-2-8-6-4-7-H.

e Fitness Function: Our objective is multi-faceted
(minimize cost Z1, minimize passenger time Z2). In
the GA, we convert this into a single-objective fitness
function F using a weighted sum:

Minimize F=w_1 Z1'+w 2 Z2'

where Z1' and Z2' are normalized to [0, 1] using min —
max scaling over the population in each generation to
maintain comparability. Unless otherwise stated, we set wl =
0.5 and w2 = 0.5. Because GA is stochastic, we run 10
independent trials with different random seeds for each
scenario and report mean * standard deviation of KPIs to
avoid seed-specific conclusions.

Constraint Handling: A penalty function is introduced
into the fitness calculation. Solutions that violate vehicle
capacity constraints or maximum passenger waiting-time
constraints are assigned a large penalty value, which
effectively eliminates infeasible solutions during evolution.

The algorithm evolves over multiple generations,
eventually converging to a high-quality solution, which
represents the optimal route and service frequency plan for
the current time slice. By repeating this process for all time
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slices, a fully dynamic operational plan for the entire day is
obtained.

D. Cost-Benefit Analysis Model

To evaluate the economic feasibility of the final plan, we
establish the following cost-benefit analysis model to
calculate the daily total profit P:

P =Rev - Cost_op - Cost_fixed

e Total Revenue (Rev): Rev = price_ ticket
N_passenger where price ticket is the fare per trip,
and N_passenger is the total number of passengers
served per day.

e Total Operating Cost (Cost_op): Cost op = c_dist 3,
D k where ¢ _dist is the fuel and maintenance cost per

unit distance, and D_k is the total daily travel distance
of vehicle k.

e Total Fixed Cost (Cost_fixed): Cost_fixed = c_driver
N _driver + c_vehicle N vehicle where ¢ driver is
the daily salary of a driver, ¢ vehicle is the daily
depreciation cost of a vehicle, and N_driver and
N_vehicle are the total number of drivers and vehicles
required, respectively.

Using this model, we can quantitatively assess the
profitability of the service plan under different parameter
settings (ticket price, vehicle size) and compare it with
traditional fixed-route shuttles, thereby providing a scientific
basis for operators' investment decisions.

V. NUMERICAL EXPERIMENTS AND CASE STUDY

To validate the effectiveness and practicality of the
proposed model and algorithms, this chapter conducts a case
study based on the Shenzhen High-Tech Industrial Park. We
first introduce the study area and data sources, then detail the
experimental setup, and finally present and analyze the
results of the numerical experiments.

A. Case Study Background

1) Study Area

The Shenzhen High-Tech Industrial Park, located in the
Nanshan District of Shenzhen, is one of China's most
important high-tech industry clusters. It covers an area of
approximately 11.5 square kilometers and is home to
thousands of technology companies, including renowned
enterprises like Tencent, Huawei, and ZTE. The park has an
employment population of over 500,000, generating
enormous daily commuting demand. The park is served by
several metro lines, with stations like Shenda, Hi-Tech Park,
and Houhai acting as major public transport hubs. The last-
mile connection from these metro stations to the various
office buildings within the park is a prominent issue, making
it an ideal scenario for this research(Figure 5).

ial Park and Transportation Network

M
I
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Fig. 5. Study Area - Shenzhen Hi-Tech Industrial Park and Transportation
Network

2) Data Sources
This study utilizes the following multi-source data:

Ride-hailing Order Data: We use an anonymized ride-
hailing order dataset obtained under a data-use agreement for
Shenzhen over a continuous one-month period (22
weekdays). Informed consent was obtained from all subjects
involved in the study.Each record contains an irreversible
hashed trip identifier, pickup/drop-off timestamps, and
pickup/drop-off coordinates (latitude/longitude). No personal
identifiers are included. Due to licensing and privacy
constraints, raw trip-level data cannot be publicly released,
however, we provide (i) the full data dictionary, (ii) the
preprocessing scripts, and (iii) aggregated demand grids and
hotspot centroids sufficient to reproduce all reported figures
and optimization results.

Road Network Data: The road network is extracted from
OpenStreetMap (OSM) using a fixed download date to
ensure version consistency. We retain drivable roads and
intersections, and  compute  shortest-path  travel
distances/times between stops using posted speed limits
where available; otherwise, we adopt road-class default
speeds and report these defaults in the parameter settings.

POI Data: POIs (office buildings, metro stations,
residential compounds, and major entrances) are obtained
from a commercial map provider or open POI source with a
fixed snapshot date. POIs are used only for functional
interpretation and auxiliary validation of hotspots; the
optimization is driven primarily by observed trip demand
points.

3) Data Preprocessing

We focus on the morning peak hours (7:00 AM to 10:00
AM) on weekdays. Ride-hailing orders with drop-off
locations within the Hi-Tech Park during this period are
extracted as the raw dataset for last-mile demand. After
preprocessing, we obtained approximately 85,000 valid last-
mile records (about 3,800 per weekday). The preprocessing
includes: removing records with missing
timestamps/coordinates; filtering out implausible speeds (e.g.,
trips implying > 120 km/h); snapping coordinates to a
consistent projection for distance calculation; and extracting
weekday morning-peak trips (7:00 — 10:00) whose drop-off
locations fall within the industrial park boundary polygon.
We report the retained record counts after each step in the
supplementary material to facilitate auditing.

B. Experimental Setup

To evaluate the performance of our proposed Dynamic
Optimized Service (DOS) model, we designed a Traditional
Fixed Service (TFS) model as a baseline for comparison.

e DOS Model: The service plan generated using the
framework and algorithms proposed in this paper.
Stop layout, routes, and schedules are all dynamically
optimized based on data.

o TFS Model (baseline): The Traditional Fixed Service
uses fixed routes and fixed headways (15 minutes)
during operating hours. To ensure a fair comparison,
TFS is constrained to use the same fleet size and
vehicle capacity as DOS in each time slice. Fixed
routes are constructed to connect the metro hub to
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major park corridors and are tuned to minimize total
route length while maintaining comparable stop
coverage (using the same candidate stop set where
applicable). This prevents performance gaps from
being driven purely by mismatched resource
assumptions.

Key parameters for the experiment are summarized
below to ensure reproducibility (see “Parameter Settings”
in this section)(Table II).

TABLE II. KEY PARAMETER SETTINGS FOR THE EXPERIMENT
Main Trave
User Propo 1 Activity Typical
Group rtion Travel Frequ Range Profile
Time
ency
Young white-
collar workers
Hish who work in
Regular 8:00- (© f Relativel the science
Commut | 45% 9:30,18:3 Y parklive along
workd | fixed X
ers 0-21:00 ays) subway lines,
Y and have
highly regular
travelpatterns.
Business
professionals
g e
Business 5 10:00- Mediu | Relatively P
20% . formeetings or
Traveler 17:00 m extensive . .

s projects, with
flexible but
purposeful
traveltimes.
Residents
living near

Distribute Ga0?< 1nyuan
Station, whose
d Concentra travelpurposes

Local throughou ted around are P rrrr)lostl
Resident | 35% t the day, | LoWw residential ty
... | local life

s more communiti .

: consumption
active on es
such
weekends .
asshopping,
leisure, and
dining.

C. Experimental Results and Analysis

1) Demand Discovery Results

Using the DBSCAN algorithm, we identified 4 major
demand hotspot clusters within the park. The spatial
distribution of these clusters is shown in the heatmap in
Figure 6. It is evident that the demand is highly concentrated
in areas with a high density of office buildings, such as the
areas around Tencent Seafront Towers and the Software Park.

Fig. 6: Spatial Distribution Heatmap of Last-Mile Demand (Morning Peak)

s 5
Longtude (Normalized)
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Fig. 6. Spatial Distribution Heatmap of Last-Mile Demand (Morning Peak)

Figure 7 shows the temporal variation curves of demand
for these four clusters. All clusters exhibit a clear morning
peak phenomenon, but their peak times and demand volumes
differ. For example, Cluster 1 (Tencent Area) has the highest
peak demand, occurring around 8:30 AM, while Cluster 4
(Software Park) has a relatively later and more prolonged
peak. These spatio-temporal differences in demand
underscore the necessity and potential of dynamic service
design.

Fig. 7. Temporal Variation of Demand by Cluster (Weekday Morning
Peak)

2) Stop Layout and Route Optimization Results

Applying the improved K-Means algorithm, we obtained
an optimized stop layout plan consisting of 18 stops, as
shown in Figure 8. These stops are strategically located near
the centroids of demand clusters, effectively covering the
main office areas while ensuring that the walking distance
for most passengers is within 300 meters.

Fig. 8: Optimized Shuttle Stop Layout (18 Stops)

o
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Fig. 8. Optimized Shuttle Stop Layout (18 Stops)

Based on the stop layout, the MOGA algorithm generated
4 optimized shuttle routes. Figure 9 shows one of the sample
routes and its dynamic schedule. This route connects the
metro hub with several key stops. Its service frequency is
dynamically adjusted according to the demand forecast for
different time periods: 15-minute intervals during the early
morning, shortened to 8-minute intervals during the peak
period (8:00-9:30), and then extended to 12-minute intervals
after the peak. This dynamic scheduling strategy allows
service capacity to precisely match demand fluctuations.
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Fig. 9: Optimized Shuttle Routes with Dynamic Scheduling
8
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Fig. 9. Optimized Shuttle Routes with Dynamic Scheduling

3) Performance Comparison: DOS vs. TFS

To quantitatively evaluate the performance of the two
models, We simulate one full workweek (5 weekdays) using
observed demand patterns. For stochastic components (e.g.,
GA), each scenario is repeated for 10 independent seeds.
KPIs are computed per day and then aggregated over the
week; we report the weekly mean + standard
deviation(Figure 10).
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Fig. 10. Key Performance Indicator Comparison: DOS vs. TFS

e Passenger Service Level: DOS improves passenger
experience compared with TFS. Over the simulated
week, the average waiting time decreases from 9.1 to
5.8 minutes (mean values; variability across
days/seeds is reported as mean + standard deviation),
corresponding to an average reduction of about
36.3%. In-vehicle time is also reduced because
optimized routes are more direct under the same fleet
constraints.

e Operational Efficiency: DOS improves seat
utilization and reduces unnecessary vehicle mileage
under matched fleet constraints. The average load
factor increases from 45.2% to 68.5%, and vehicle
deadheading/VMT is reduced by about 25.4% on
average, which translates into lower operating costs in
the cost model.

e Economic Benefits: Under the assumed fare and cost
parameters (reported explicitly in the parameter
settings), DOS yields higher estimated daily profit
than TFS while serving more passengers. With a
ticket price of 3 CNY per trip, the estimated daily
profit is about 6,959 CNY for DOS versus 3,545
CNY for TFS in the case study week. We emphasize
that absolute profit values depend on cost
assumptions; therefore, we additionally provide a
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sensitivity analysis over key parameters (fare, per-km
cost, driver cost, and depreciation).

Overall, the numerical experiments suggest that the
proposed DOS framework can outperform a fixed-route
baseline in both service quality and operational efficiency
under the study assumptions. We report full parameter
settings and repeated-run statistics to support reproducibility
and to clarify the conditions under which these gains hold.

VI. DISCUSSION AND CONCLUSION

This study proposed and validated a data-driven
framework for last-mile shuttle service design, centered on
precision matching and service optimization. The empirical
results from the Shenzhen High-Tech Industrial Park case
study demonstrate the significant potential of this framework
in enhancing service efficiency, improving passenger
experience, and increasing operational profitability. This
chapter will further discuss the theoretical contributions and
practical implications of the research, acknowledge its
limitations, and suggest directions for future work.

A. Discussion of Findings

The superiority of the Dynamic Optimized Service (DOS)
model over the Traditional Fixed Service (TFS) model can
be attributed to several key innovations:

e From Static to Dynamic: The core advantage of our
model lies in its ability to capture and adapt to the
dynamic nature of travel demand. By analyzing high-
frequency ride-hailing data, we moved beyond the
static, aggregated demand assumptions of traditional
planning methods. The time-of-day scheduling
strategy allows service capacity to be deployed
precisely when and where it is needed most,
effectively resolving the classic supply-demand
mismatch problem that plagues fixed-route systems.

e The Power of Precision Matching: The proposed
Passenger-Stop-Vehicle (PSV) three-level matching
model serves as a crucial conceptual bridge. It
deconstructs the complex system optimization
problem into a series of clear, targeted matching
relationships. This ensures that the optimization
process is not a black box but is guided by the
principle of aligning service resources with individual
needs at every level, from a passenger choosing a stop
to a vehicle being assigned to a route.

e Integrated Optimization: Unlike previous studies that
often optimized stops, routes, or schedules in
isolation, our framework emphasizes their
coordinated optimization. The improved K-Means
algorithm for stop layout considers not just spatial
coverage but also demand volume, providing a more
rational input for the subsequent routing algorithm.
The Multi-Objective Genetic Algorithm (MOGA)
then simultaneously considers multiple performance
metrics, finding a balanced solution that would be
difficult to achieve through sequential, single-
objective optimization.

B. Theoretical Contributions and Practical Implications
Theoretical Contributions:

e This research enriches the literature on public
transport planning by providing a comprehensive,
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end-to-end data-driven framework for designing
demand-responsive transit systems. It systematically
integrates  methodologies from data mining
(DBSCAN), machine learning (K-Means), and
operations research (MOGA).

e The introduction of the PSV precision matching
concept offers a new theoretical lens for analyzing
and modeling the intricate relationships within shared
mobility systems, which can be extended to other
shared transport services like carpooling or on-
demand buses.

Practical Implications:

e For transport operators, this study provides a
complete, actionable toolkit for designing and
operating modern shuttle services. Adopting this
model can help them break away from the low-
efficiency, low-profitability dilemma, significantly
improving their market competitiveness and financial
sustainability.

e For urban planners and policymakers, this research
demonstrates how leveraging existing big data
resources can lead to more efficient and user-centric
public transport solutions. It provides a strong case
for promoting data sharing and investing in intelligent
transportation systems to alleviate urban congestion
and advance sustainable mobility goals.

e For commuters, the implementation of such a service
would mean shorter waiting times, less walking, and
a more reliable and comfortable last-mile travel
experience, which could incentivize a shift from
private cars to public transit.

C. Limitations and Future Research

Despite the promising results, this study has several
limitations that open avenues for future research:

e Data Source Limitations: This study primarily relied
on ride-hailing data, which may not capture the full
spectrum of last-mile travel demand (those who walk,
bike, or use other modes). Future research could
integrate multi-source data, such as public transit
smart card data, mobile signaling data, and shared-
bike data, to create a more holistic demand profile.

e Real-time Dynamics: The current model, while
dynamic, operates on an offline, day-ahead planning
basis. It does not yet incorporate real-time
adjustments based on live traffic conditions or sudden
demand surges. Future work could focus on
developing a real-time dynamic dispatching module
that can adjust routes and schedules on the fly, further
enhancing system responsiveness.

e Behavioral Considerations: The model assumes that
passengers will always choose the service based on
rational factors like time and cost. It does not account
for more complex behavioral factors, such as comfort,
safety perceptions, or brand loyalty. Incorporating
discrete choice models or agent-based simulations
could lead to more realistic demand predictions and
service designs.

e Scalability and Transferability: While the framework
is designed to be general, its specific parameters and
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performance were validated in the context of a single
industrial park. Further studies are needed to test its
scalability and transferability to other urban contexts,
such as university campuses, large residential
communities, or tourist areas, which may have
different demand characteristics.

D. Reproducibility and Data/Code Availability

Reproducibility and Data/Code Availability: To facilitate
reproducibility, we provide the complete list of parameter
settings, algorithmic pseudocode, and the preprocessing
pipeline (cleaning rules, boundary filtering, coordinate
projection, and demand aggregation). Due to privacy and
licensing restrictions, raw trip-level ride-hailing records
cannot be publicly shared; however, we release derived and
non-identifying artifacts, including aggregated demand grids,
hotspot centroids, candidate stop sets, and the processed
road-network graph used for routing. These artifacts,
together with the optimization code and random seeds, are
sufficient to reproduce all figures, KPIs, and comparative
conclusions reported in this paper.

E. Conclusion

The last-mile problem is a persistent challenge in urban
transportation, but the proliferation of big data and advanced
analytics offers a powerful new arsenal to tackle it. This
study proposed a data-driven framework for last-mile shuttle
service design, integrating dynamic demand discovery, a
novel PSV precision matching model, and a coordinated
optimization algorithm. Through a case study in Shenzhen,
we demonstrated that this approach can lead to a service that
is significantly more efficient, user-friendly, and profitable
than traditional fixed-route systems.

As cities continue to grow and smart technologies
become more ubiquitous, the future of urban mobility lies in
systems that are adaptive, responsive, and personalized. The
principles and methods developed in this research represent a
firm step in that direction, offering a viable pathway to
transform the last-mile journey from a daily frustration into a
seamless and sustainable experience.
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