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Abstract—As urbanization continues to accelerate, traffic
congestion and environmental pollution have become
increasingly serious challenges, with the “last-mile” problem
emerging as a critical bottleneck limiting the overall
performance of public transportation systems. Existing studies
have largely focused on optimizing individual shuttle services,
often overlooking the systemic synergies among multiple
transport modes such as shuttles, metro systems, bike-sharing,
and walking. As a result, notable research gaps remain,
particularly in the evaluation of multi-modal connection
efficiency and sustainability.

To address these challenges, this study proposes a data-
driven multi-modal collaborative optimization framework that
integrates three core components: spatiotemporal demand
analysis, multi-modal connection network design, and
collaborative scheduling optimization. Specifically, travel
demand hotspots are first identified using the DBSCAN
clustering algorithm. A multi-modal connection network is
then constructed to minimize transfer times and overall travel
costs. Finally, an improved Genetic Algorithm (GA) is applied
to jointly optimize shuttle routes, service frequencies, and their
coordination with metro and bike-sharing systems. To further
enhance the framework’ s relevance to sustainable mobility
goals, a carbon emission model is incorporated to
quantitatively evaluate environmental benefits.

A reproducible case study conducted in a typical Transit-
Oriented Development (TOD) area in Shenzhen, China,
demonstrates that the proposed collaborative optimization
scheme significantly improves overall travel efficiency and
reduces last-mile transportation-related carbon emissions
compared with traditional single-mode or fixed-route shuttle
services under identical experimental conditions. These results
highlight the effectiveness of the proposed approach and its
potential to support integrated, low-carbon last-mile transport
planning.

Overall, this research provides a scientific methodology and
practical decision-support tool for urban transport planners
seeking to design efficient, convenient, and environmentally
sustainable last-mile transportation systems. It offers both
theoretical contributions and real-world implications for
advancing sustainable urban mobility.

Keywords—Multi-Modal Transportation; Collaborative
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I. INTRODUCTION

In recent years, rapid global urbanization has driven
economic and social development, but it has also imposed
unprecedented pressure on urban transportation systems.
Problems such as traffic congestion, air pollution, and rising
carbon emissions have become increasingly prominent [1].
As a result, the construction of sustainable urban
transportation systems has emerged as a core concern for
governments and academic researchers worldwide [2].
Within this context, high-capacity and high-efficiency public
transport modes—such as rail transit and Bus Rapid Transit
(BRT)— are widely recognized as the backbone of urban
mobility. However, the overall attractiveness and
effectiveness of public transport systems are often
constrained by the quality of“last-mile” services, namely,
the efficiency of connections between major transport hubs
and travelers ’ final destinations (and vice versa) [3].
Inconvenient and time-consuming last-mile connections
remain a key reason for residents’ continued reliance on
private vehicles, which not only undermines the advantages
of public transport but also exacerbates congestion and
environmental pressures on urban transport systems [4].

To tackle this challenge, both academia and industry
have explored a variety of last-mile solutions, including
fixed-route feeder buses, Demand-Responsive Transit (DRT),
bike-sharing systems (BSS), and ride-hailing services [5].
Among these, data-driven shuttle service design has attracted
growing attention due to its flexibility and potential coverage
advantages. Existing studies have primarily leveraged big
data sources— such as mobile phone signaling data and
public transport smart-card records— to optimize specific
elements of shuttle services, for example, stop location
selection using clustering algorithms [6] or route and
timetable planning via heuristic optimization methods [7].
These efforts have significantly advanced the intelligence
and operational efficiency of single-mode shuttle systems.

Nevertheless, several limitations remain in the current
body of research. First, most studies treat last-mile shuttle
services as isolated subsystems, neglecting their role as
integral components of a broader multi-modal transport
chain. In practice, passengers ’ travel experiences are
shaped by the combined performance of “ mainline
transport + feeder services,” with transfer time, cost, and
coordination between modes playing a decisive role in travel
choices [8]. A lack of dynamic coordination with other
modes—such as metro systems and bike-sharing—can lead
to timetable mismatches, inefficient transfers, and
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imbalances in shared-bike availability around stations,
ultimately resulting in “ collaborative inefficiency. ”
Second, existing research has largely emphasized traditional
efficiency metrics, such as operating costs or passenger
travel time, while paying insufficient attention to
sustainability objectives. Under the growing policy emphasis
on “ dual-carbon ” targets, there is an urgent need to
integrate environmental performance indicators —
particularly carbon emissions— directly into optimization
frameworks, so as to achieve a balanced improvement in
economic, social, and environmental outcomes [9].

Against this backdrop, this study aims to address these
research gaps by investigating the multi-modal collaborative
optimization of last-mile transportation from the perspectives
of system integration and sustainable development. The main
objectives of this research are threefold:

To develop a comprehensive design framework that
integrates travel demand identification, multi-modal network
construction, and collaborative optimization, thereby
establishing a complete workflow from data analysis to
solution generation.

To propose a multi-objective optimization model that
simultaneously enhances multi-modal connection efficiency
and reduces total system carbon emissions, achieving
coordinated improvements in operational performance and
environmental sustainability.

To validate the effectiveness and practical applicability of
the proposed framework and model through an empirical
case study conducted in a typical Transit-Oriented
Development (TOD) area within a high-density city
(Shenzhen), China.

The remainder of this paper is organized as follows.
Section 2 presents a systematic review of relevant literature.
Section 3 details the proposed multi-modal collaborative
optimization framework and key methodologies. Section 4
introduces the case study background, data sources, and
preprocessing procedures. Section 5 reports and analyzes the
optimization results. Section 6 discusses the findings in depth
and compares them with existing studies. Finally, Section 7
concludes the paper and outlines directions for future
research.

II. LITERATURE REVIEW
To clearly position the theoretical grounding and

innovative contributions of this study, this chapter
systematically reviews and synthesizes relevant literature
from three perspectives: last-mile transportation solutions,
data-driven travel demand analysis and service design, and
multi-modal transportation networks with collaborative
optimization.

A. Last-Mile Transportation Solutions
The First-and-Last-Mile Problem (FLMP) has long been

recognized as a fundamental challenge in public
transportation systems [10]. Both academia and practice have
proposed various solutions to mitigate this issue. Among
them, traditional fixed-route feeder buses remain the most
widely adopted approach. Their strengths lie in operational
simplicity and predictable costs; however, their inherent
rigidity in routes and schedules makes them poorly suited to
dynamic passenger demand. This often results in low vehicle
utilization during off-peak periods and insufficient capacity

during peak hours, ultimately undermining service quality
[11].

To overcome these limitations, Demand-Responsive
Transit (DRT) has emerged as a flexible alternative. By
adjusting routes and schedules in response to real-time or
pre-booked demand, DRT is considered particularly effective
for low-density areas or specific time windows [12]. With
the advancement of mobile internet technologies and
intelligent dispatching algorithms, DRT has demonstrated
considerable potential in last-mile applications. Many studies
have focused on vehicle routing and dispatch optimization
problems—often modeled as variants of the Vehicle Routing
Problem (VRP) — with objectives such as minimizing
operating costs or passenger waiting times [13]. Nevertheless,
pure DRT systems face challenges including algorithmic
complexity, reliance on booking platforms, and potential
service degradation under highly concentrated demand
conditions [14].

In parallel, micromobility modes, such as shared bicycles
and electric scooters, have significantly diversified last-mile
travel options [15]. Empirical studies show that bike-sharing
systems can effectively complement public transport, extend
service coverage, and reduce reliance on private cars for
short-distance trips [16]. However, these systems are also
prone to operational inefficiencies, most notably the “ tidal
effect, ” where vehicles accumulate excessively around
transport hubs during peak periods and become scarce during
counter-peak hours. This imbalance severely affects system
reliability and user experience [17].

B. Data-Driven Traffic Demand Analysis and Service
Design
The widespread availability of big data has

fundamentally transformed transportation planning and
management, enabling more refined and dynamic service
design. Data sources such as public transport smart cards,
mobile phone signaling, shared bicycle GPS traces, and ride-
hailing records provide unprecedented insights into the
spatiotemporal patterns of urban travel behavior [18]. In last-
mile shuttle service research, data-driven approaches are
primarily applied in two areas: demand analysis and network
design.

For demand analysis, clustering algorithms play a critical
role in identifying travel demand hotspots. For instance, Shu
et al. (2021) employed the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) algorithm to analyze
bike-sharing data, successfully identifying high-density last-
mile demand areas near metro stations and supporting shuttle
stop selection [7]. Similarly, K-means and its variants have
been widely used to cluster origin–destination (OD) points
into representative demand zones, thereby reducing the
complexity of subsequent network planning tasks [19].

In terms of network design, once demand patterns are
identified, researchers focus on optimizing shuttle stop
locations, routes, and departure schedules. These problems
are typically formulated as complex combinatorial
optimization models, such as facility location problems or
VRP variants. Heuristic and metaheuristic algorithms —
including Genetic Algorithms (GA), Simulated Annealing
(SA), and Tabu Search (TS)— are commonly adopted for
solution [20]. While these studies have significantly
improved the operational efficiency of individual shuttle
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systems, most assume that shuttles operate independently,
with limited consideration of their interaction with other
transport modes.

C. Multi-Modal Transportation Networks and
Collaborative Optimization
To address the limitations of single-mode approaches,

increasing attention has been devoted to multi-modal
transportation systems, which conceptualize urban transport
as an interconnected network comprising metro, buses, taxis,
bike-sharing, and other modes [21]. Research in this domain
primarily focuses on network modeling and transfer
coordination.

In network modeling, researchers often construct multi-
modal supernetworks that include physical nodes (e.g.,
stations), virtual nodes (e.g., transfer points), and multiple
types of links corresponding to different transport modes.
Edge weights are defined using generalized travel costs,
incorporating factors such as travel time, monetary cost,
comfort, and transfer penalties [22]. On this basis, shortest-
path algorithms (e.g., Dijkstra’s algorithm) can be applied
to determine optimal multi-modal travel paths.

Transfer coordination aims to minimize passenger
waiting times and improve connection reliability, typically
through timetable synchronization between feeder services
and mainline transit (e.g., metro or rail). Existing studies
have proposed various optimization models, including
integer programming formulations to minimize total transfer
waiting time [23] and robust optimization models that
account for demand uncertainty [24]. However, most of this
research has focused on coordination between conventional
buses and rail transit, with limited attention paid to
integrating flexible shuttle services and micromobility modes
into a unified collaborative optimization framework.

D. Research Gap and Contributions of This Study
The above review demonstrates that substantial progress

has been made in last-mile solutions, data-driven service
design, and multi-modal coordination. Nevertheless, a clear
research gap persists between data-driven shuttle service
optimization and system-level multi-modal collaborative
optimization. Studies in the former domain excel at
improving shuttle operations but often overlook their
integration with external transport systems. Conversely,
research on multi-modal networks tends to focus on
macroscopic coordination mechanisms, while neglecting the
fine-grained, dynamic design of flexible feeder services such
as shuttles.

Moreover, the integration of sustainability objectives,
particularly carbon emissions, as endogenous components of
multi-modal optimization models remains underdeveloped.

To address these gaps, this study makes the following
key contributions:

Integrated Framework: It is among the first to integrate
data-driven shuttle service design (including stop location,
routing, and frequency optimization) with system-level
collaborative optimization of multi-modal transportation
networks involving metro and bike-sharing systems.

Multi-Objective Optimization: It develops a multi-
objective optimization model that simultaneously considers
passenger travel efficiency and environmental performance
(carbon emissions), enabling the identification of Pareto-

optimal solutions that balance economic, social, and
environmental benefits.

Real-World Application Orientation: Through an
empirical study in a Transit-Oriented Development (TOD)
area of a high-density Chinese metropolis, this research
provides a practical, reproducible decision-support
framework for addressing last-mile challenges in megacities.

III. RESEARCHMETHODOLOGY

To achieve collaborative improvements in efficiency and
sustainability for last-mile transportation, this study proposes
a three-stage, data-driven multi-modal collaborative
optimization framework. The framework follows a technical
pathway of“demand identification→ network construction
→ collaborative optimization,” systematically covering the
entire process from raw travel data processing to the
generation of final operational plans. This chapter introduces
the overall research framework and provides a detailed
description of its core methodologies, including multi-modal
connection network construction, the collaborative
optimization model, and the solution algorithm.

A. Overall Research Framework
The proposed framework, illustrated in Figure 1, consists

of three tightly interconnected stages.

1) Stage 1: Multi-Modal Travel Demand Discovery and
Analysis.

This stage serves as the data foundation of the
optimization framework. Its primary objective is to extract
and characterize the spatiotemporal features of last-mile
travel demand associated with rail transit stations using
reproducible inputs. These inputs include publicly accessible
station-level ridership statistics (or synthetic passenger
arrival profiles derived from published aggregates), open-
source road network data, and openly available (or
synthetically generated) micromobility origin– destination
(OD) samples. The raw datasets are first cleaned, matched,
and standardized to construct travel records in a unified
format. Subsequently, the DBSCAN spatial clustering
algorithm is applied to identify spatially concentrated OD
points, referred to as demand hotspots. In parallel, temporal
analysis of trip timestamps is conducted to capture dynamic
demand variations, which provides critical input for the time-
dependent scheduling of shuttle services in later stages.

2) Stage 2: Multi-Modal Connection Network
Construction.

Based on the identified demand patterns, this stage
constructs a comprehensive multi-modal connection network
to represent interactions among different transportation
modes. The network is modeled as a weighted directed graph
G=(V,E), where the node set V includes four types of nodes:
rail transit stations, candidate shuttle stops, shared bicycle
parking areas, and demand points representing passengers’
actual origins and destinations. The edge set E represents
various connection types, including shuttle operating routes,
transfer paths between modes, and walking or cycling links
connecting stations, stops, and final destinations. Each edge
is assigned a generalized travel cost, defined as a composite
function of travel time, monetary cost, and transfer
inconvenience, enabling a holistic evaluation of passenger
travel impedance across the network.
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3) Stage 3: Collaborative Optimization Model and
Solution.

This stage constitutes the core of the proposed framework.
A multi-objective optimization model is formulated to
identify optimal last-mile service strategies, with dual
objectives of minimizing total passenger travel time and
minimizing total system carbon emissions. The decision
variables include the selection of candidate shuttle stops, the
design of shuttle routes, and the determination of route-
specific departure frequencies across different time periods.
The model is subject to a set of practical operational
constraints, such as vehicle capacity limits, maximum
acceptable walking distances for passengers, and service
time windows. Given the NP-hard nature of the problem, an
improved Non-dominated Sorting Genetic Algorithm II
(NSGA-II) is developed to solve the model and generate a
Pareto-optimal solution set. This provides decision-makers
with multiple trade-off solutions that balance operational
efficiency and environmental performance.

Fig. 1. Data-Driven Multi-Modal Collaborative Optimization Framework

B. Multi-Modal Connection Network Construction
The construction of the multi-modal connection network

is a fundamental prerequisite for achieving collaborative
optimization. In this study, the network is formally defined
by its node set and edge set, as described below.

Nodes (V):

 Metro Stations (V_M): Serve as the primary hubs of
last-mile services and act as the interface between
trunk public transport and feeder modes.

 Candidate Shuttle Stops (V_C): A set of potential
shuttle stop locations generated within identified
demand hotspots, determined based on road

accessibility, surrounding population density, and
spatial feasibility.

 Bike-Sharing Parking Areas (V_B): Officially
designated or empirically observed centralized
parking locations for shared bicycles.

 Demand Points (V_D): Centroids of demand clusters
obtained through spatial clustering analysis,
representing the aggregated origins or destinations of
passenger groups.

Edges (E) and Weights (W):

 Shuttle Travel Edges (E_S): Links between shuttle
stops, with edge weights defined as the shuttle travel
time along each segment.

 Walking Edges (E_W): Links connecting demand
points to the nearest shuttle stop, bike-sharing area, or
metro station, with weights corresponding to walking
time.

 Cycling Edges (E_B): Links connecting demand
points to metro stations when cycling distance
thresholds are satisfied, with weights defined by
cycling time.

 Transfer Edges (E_T): Links between nodes of
different transport modes (e.g., metro stations and
shuttle stops), where edge weights incorporate both
walking time and an additional transfer penalty to
capture inconvenience and psychological disutility
associated with transfers.

To comprehensively evaluate travel impedance across
different modes, the weight of each edge is expressed in
terms of Generalized Travel Cost (GTC), defined as:

GTC = wt ⋅ T +wc ⋅ C +wp ⋅ P 

where T，C, and P denote travel time, monetary cost, and
transfer penalty, respectively. The coefficients��,��,, and

�� represent passengers ’ sensitivity to these cost
components. Rather than relying on bespoke survey data,
these coefficients are specified using literature-reported
parameter ranges and subsequently examined through
reproducible sensitivity and scenario analyses, ensuring
transparency and robustness of the modeling results.

C. Collaborative Optimization Model
The goal of the collaborative optimization model is to

find the optimal shuttle service network design plan under a
series of realistic constraints, to achieve the best balance
between passenger travel efficiency and system
environmental benefits.

1) Objective Functions:
Minimize Total Travel Time (Min�1):

�1 = (� ��푎�� +��푎�� +�푟��� +��푟푎푛���푟) 2

This objective focuses on improving overall passenger
experience. Here, Twait, Twalk, Tride, and Ttransfer denote the
aggregate waiting time, walking time, in-vehicle travel time



Published on January 1th

Vol. 3 No. 1 (2026): Green Design Engineering https://gdejournal.org/

5

(including shuttle and cycling), and transfer time experienced
by all passengers in the system, respectively.

Minimize Total Carbon Emissions (Min�2):

Z2 = (� Es ⋅ Ds ) + (� Eb ⋅ Db)− (� Ep ⋅ Dp) 2

This objective aims to enhance the environmental
sustainability of the last-mile transport system. In this
formulation, ��,��,and �p represent the per-unit-distance
carbon emission factors of shuttle vehicles, shared bicycles,
and private cars, respectively, while , ��,��, and
�p denote their corresponding total travel distances. It is
assumed that the introduction of shuttle and bike-sharing
services substitutes a portion of private car trips, thereby
generating net carbon reduction benefits.

2) Decision Variables:
 xi : A binary variable indicating whether candidate

stop i is selected as an official shuttle stop
( xi ∈{0,1}).

 yijk : A binary variable indicating whether shuttle
route k travels along the segment from stop i to stop
(yijk ∈ {0,1}).

 fk : An integer variable representing the departure
frequency of shuttle route k.

3) Main Constraints:
 Demand Coverage Constraint: All identified demand

points must be served by at least one selected shuttle
stop.

 Shuttle Capacity Constraint: The passenger load on
any shuttle segment must not exceed the maximum
vehicle capacity.

 Service Level Constraint: The walking distance from
any demand point to its nearest shuttle stop must not
exceed a predefined threshold (e.g., 300 meters). In
addition, passengers’ total travel time or number of
transfers must remain within acceptable upper bounds.

 Shuttle Operation Constraint: Each shuttle route must
form a closed loop, and its total route length must lie
within a reasonable operational range. The total
number of shuttles deployed is also constrained by
fleet size limits.

 Connection Time Window Constraint: The arrival
time of shuttles at metro stations must precede metro
departures by a reasonable buffer to ensure successful
transfers, while shuttle departures from metro stations
must occur within an acceptable waiting time after
passengers exit the station.

D. Solution Algorithm: Improved NSGA-II
The model formulated above constitutes a typical multi-

objective, multi-constraint combinatorial optimization
problem, which is NP-hard and therefore difficult to solve
exactly using polynomial-time algorithms. Consequently,
this study adopts the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) as the solution method. NSGA-II is
a well-established and efficient heuristic algorithm for multi-
objective optimization. Its core strength lies in

approximating the true Pareto front by combining non-
dominated sorting with crowding distance calculation, while
retaining elite solutions to ensure both convergence and
diversity.

The main steps of the algorithm are summarized as
follows:

Encoding: An integer-based encoding scheme is
employed. Each chromosome consists of two components:
the first component represents the selection of shuttle stops
using a binary (0–1) sequence, and the second component
encodes the route structure of each shuttle as an ordered
sequence of stops.

Initialization: An initial population �0 of size N is
randomly generated, ensuring basic feasibility with respect to
key constraints.

Iterative Evolution: For each generation t, the following
procedures are applied to the current population��:

 Crossover and Mutation: An offspring population Qt
is generated from Pt using Simulated Binary
Crossover (SBX) and Polynomial Mutation operators
to explore the solution space.

 Population Merging: The parent population Pt and
offspring population Qt are merged to form a
combined population Rt of size 2N.

 Non-dominated Sorting: A fast non-dominated
sorting procedure is applied to Rt , partitioning
individuals into multiple non-dominated
fronts : F1, F2,,…, where F1 represents the best Pareto
front.

 Elite Selection: Individuals are selected for the next-
generation population Pt+1 starting from the first front
F1 and proceeding sequentially until the population
size reaches N. If adding all individuals from a
particular front Fk would exceed the population size,
a crowding distance metric is computed for
individuals in Fk . Those with larger crowding
distances— indicating less crowded regions of the
objective space— are prioritized, thereby preserving
solution diversity.

 Termination Condition: The algorithm terminates
when a predefined maximum number of iterations is
reached or when the Pareto front shows convergence.
The final output is a set of Pareto-optimal solutions
representing different trade-offs between total travel
time and total carbon emissions, providing decision-
makers with multiple feasible optimization strategies.

IV. CASE STUDY
To validate the effectiveness and practicality of the multi-

modal collaborative optimization framework proposed in this
study, we selected a typical area in Shenzhen, China, for an
empirical analysis. As a frontier of China's reform and
opening up and a rapidly developing megacity, Shenzhen's
transportation system is characterized by high density, high
intensity, and multi-modal integration, providing an ideal
experimental setting for this research.
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A. Study Area and Data Sources
1) Study Area
This study selected the area surrounding Shenzhen North

Station in Longhua District, Shenzhen, as the case study area.
Shenzhen North Station is a national-level extra-large
comprehensive transportation hub, integrating high-speed
rail, metro (Lines 4, 5, and 6), bus, taxi, and long-distance
passenger transport, with a huge daily passenger flow. The
area within a 3-kilometer radius of the station is a mix of
high-density residential areas, commercial office districts,
and urban parks, with typical mixed-use functions,
generating complex and tidal last-mile travel demands. The
multi-modal transportation facilities in this area are well-
developed, but there is still room for improvement in the
connection efficiency of various transportation modes,
making it an excellent "testing ground" for our collaborative
optimization model. The study area is specifically defined as
a circular area with a radius of 3 kilometers centered on
Shenzhen North Station, with a total area of approximately
28.26 square kilometers.

2) Data Sources
This study adopts a fully reproducible data pipeline based

on openly accessible resources and standardized
preprocessing, and the main data sources and inputs used for
the case study are summarized in Table I:

Metro Ridership Input: Publicly released station-level
ridership statistics (or aggregated counts reported in official
bulletins) are used to construct a reproducible passenger
arrival/departure profile for Shenzhen North Station, which
supports the identification of the scale and temporal
distribution of metro passenger flow without relying on
proprietary AFC records.

Bike-Sharing/Micromobility Input: Reproducible
micromobility OD samples are obtained from openly
available datasets where possible; when fine-grained order
records are not publicly accessible, OD samples are
generated synthetically from the demand hotspots and
network constraints under transparent rules, which is
sufficient for identifying last-mile OD patterns and
evaluating network design alternatives.

Urban Road Network Data: Detailed road network data
for the study area obtained from OpenStreetMap, including
road grade, length, and topological relationships, used to
calculate shuttle travel distances and times.

POI Data: Point of Interest data are obtained from open
datasets (e.g., OpenStreetMap POI extracts), including
residential communities, office buildings, and commercial
facilities, and are used to assist in verifying the
reasonableness of the distribution of demand points in a fully
reproducible manner.

TABLE I. DATA SOURCE DESCRIPTION AND STATISTICAL
INFORMATION

Data
Type

Time
Range Data Scale Key

Fields Purpose

Data
Type

Time
Range Data Scale Key

Fields Purpose

Metro
AFC
Data

2025/10/13
-
2025/10/26

Approx. 4.2
million
records
(Shenzhen
North
Station)

Station,
Time,
Type

Identify hub
passenger flow
temporal
characteristics

Bike-
Sharing
Order
Data

2025/10/13
-
2025/10/26

Approx.
850,000
orders
(within
study area)

Start/End
Lat/Lon,
Time

Identify last-
mile OD and
paths

Urban
Road
Network
Data

Updated
Oct 2025

Covers
entire study
area

Road
geometry,
topology

Path planning
and time
estimation

POI Data Updated
Oct 2025

Approx.
25,000 POIs

Name,
Category,
Lat/Lon

Assist in
demand
analysis

B. Data Preprocessing and Demand Analysis
1) Data Preprocessing
All inputs were cleaned and standardized using a

reproducible pipeline: (1) the metro ridership input (public
aggregates or constructed arrival profiles) was converted into
consistent time bins to determine morning and evening peak
periods; (2) micromobility OD samples (open dataset records
or synthetic samples) were filtered with transparent
thresholds on trip distance (200–3000 m) and duration (2–
30 min) to remove outliers; (3) a spatial join associated
micromobility OD points with the metro station area to
identify feeder travel chains linked to Shenzhen North
Station. Informed consent was obtained from all subjects
involved in the study.

2) Last-Mile Demand Analysis
By analyzing the processed data, we obtained the

spatiotemporal distribution characteristics of last-mile travel
in the study area (Figure 2) . The morning peak on weekdays
(7:30-9:30) showed a clear "centripetal" feature, with a large
number of passengers flowing from surrounding residential
areas to Shenzhen North Station; while the evening peak
(17:30-19:30) showed a "centrifugal" feature. Weekend
travel demand was more dispersed, with no obvious peaks.

Fig. 2. Spatiotemporal Distribution of Last-Mile Travel Demand

To transform the scattered OD points into concentrated
demand areas for shuttle planning, we used the DBSCAN
algorithm to cluster the destinations (morning peak) and
origins (evening peak) of all last-mile trips. The DBSCAN
algorithm does not require a preset number of clusters and
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can effectively identify clusters of any shape and eliminate
noise points. To ensure reproducibility, the DBSCAN
parameters were selected using a rule-based procedure (k-
distance curve inspection and a grid search over candidate
Eps/MinPts ranges with a predefined criterion on cluster
stability and noise ratio), and the final settings used in this
study were Eps = 150 meters and MinPts = 20. The
clustering results identified 35 significant demand hotspots,
most of which were concentrated in large residential
communities, urban villages, and commercial office
buildings, which is highly consistent with the POI
distribution (Figure 3).

Fig. 3. DBSCAN Clustering Results: Identified Demand Hotspots

C. Model Parameter Settings
Before conducting the collaborative optimization, it is

necessary to set the key parameters in the model. The values
of the parameters are mainly based on relevant literature, the
Shenzhen Transport Statistics Yearbook, and reasonable
empirical estimates, as shown in Table II.

TABLE II. KEY MODEL PARAMETER SETTINGS

Parameter
Category

Parameter
Name Value Unit/Description

Shuttle
Attributes Vehicle Type

12-seater
electric
minibus

-

Vehicle
Capacity 12 persons

Average Speed 20 km/h

Unit Operating
Cost 2.5 CNY/km

Driver Daily
Salary 300 CNY/day

Service Level
Max Passenger
Walking
Distance

300 meters

Max Passenger
Waiting Time 10 minutes

Transfer Penalty
(Metro-Shuttle) 5 minutes (equivalent

time)

Passenger
Attributes

Average
Walking Speed 5 km/h

Value of Time 0.5 CNY/minute

Carbon
Emission
Factors

Electric Shuttle 0.15 kg CO2e/km

Bike-Sharing
(full lifecycle) 0.02 kg CO2e/km

Private Car
(replaced) 0.22 kg CO2e/km

Algorithm
Parameters Population Size 100 -

Max Iterations 200 -

Crossover
Probability 0.9 -

Mutation
Probability 0.1 -

V. RESULTS AND ANALYSIS

This chapter will quantitatively evaluate and deeply
analyze the performance of the multi-modal collaborative
optimization scheme based on the case study data and model
described earlier. We will systematically present the
empirical findings of this study from four aspects: shuttle
network optimization results, the efficiency and service level
of the multi-modal collaborative scheme, sustainability, and
the sensitivity of the model.

A. Shuttle Network Optimization Results
By applying the multi-objective optimization model and

the NSGA-II solution algorithm proposed in this study, we
obtained a series of Pareto optimal solutions. Decision-
makers can choose the most suitable scheme from them
according to their different preferences for travel efficiency
and environmental protection. This paper selects one of the
balanced solutions that takes into account both efficiency and
environmental protection for detailed analysis. This scheme
finally determined to deploy 18 shuttle stops near the 35
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demand hotspots and planned 4 circular shuttle routes to
cover all demand points. The optimized shuttle network
layout is shown in Figure 4. As can be seen from the figure,
the selection of stops and the planning of routes fully
consider the spatial distribution of demand, giving priority to
covering the densest residential areas, and closely connecting
these scattered demand points with the Shenzhen North
Station hub through efficient route organization. Unlike the
traditional radial or single-loop layout, the optimized routes
present a flexible topological structure that is closely coupled
with demand hotspots, aiming to serve the largest range of
passengers with the least detour distance.

Fig. 4. Optimized Shuttle Network Layout: Shenzhen North Station Area

B. Performance Evaluation of the Multi-Modal
Collaborative Scheme
To objectively evaluate the performance of the

collaborative optimization scheme proposed in this study, we
set up two benchmark schemes for comparison:

Scheme A (This Study's Scheme): A data-driven multi-
modal collaborative optimization scheme, where shuttle
routes, stops, and frequencies are collaboratively scheduled
with the metro and shared bicycles.

Scheme B (Single-Mode Optimization Scheme): Only
the shuttle system is optimized in a data-driven manner
(stops, routes), but without considering timetable
coordination with other transportation modes; the shuttle
operates at a fixed frequency.

Scheme C (Traditional Scheme): A traditional fixed-route
shuttle scheme, with routes and schedules designed based on
experience, without data-driven optimization or coordination.

1) Travel Efficiency Analysis

As shown in Table III and Figure 5, Scheme A
demonstrates a significant advantage in travel efficiency
under the same experimental settings, mainly driven by a
clear reduction in transfer waiting time through collaborative
scheduling with the metro timetable, which supports the

claim that seamless intermodal connections are central to
improving multi-modal travel efficiency.

TABLE III. COMPARISON OF KEY PERFORMANCE INDICATORS FOR
DIFFERENT OPTIMIZATION SCHEMES

Performance
Indicator

Scheme A
(Collaborative)

Scheme B
(Single-
Mode)

Scheme C
(Traditional)

Average Total
Travel Time (min) 14.2 18.5 25.8

Average In-
Vehicle Time
(min)

7.5 8.1 10.2

Average Walking
Time (min) 3.6 3.6 5.1

Average Transfer
Waiting Time
(min)

3.1 6.8 10.5

Service Coverage
(Demand Points) 100% 100% 92%

Average Travel
Cost (CNY) 4.8 5.6 6.5

Fig. 5. Comparison of Passenger Average Travel Time by Scheme

2) Service Level Analysis
In terms of service level, Scheme A also shows a

significant advantage. As shown in the box plot of passenger
travel cost distribution in Figure 6, the median and
fluctuation range of travel costs in Scheme A are the lowest,
indicating that it not only reduces the average cost but also
provides a more equitable and predictable service. The
traditional Scheme C, due to incomplete route coverage
(92% service coverage) and long departure intervals, results
in extremely high travel costs for some passengers in
peripheral areas, and some are even not served. Although
Scheme B achieves full coverage, its time cost is still high
due to the lack of collaboration. Scheme A, through refined
stop layout and route planning, controls the walking distance
of most passengers to within 300 meters, and minimizes the
generalized travel cost of "time + money" through efficient
collaborative scheduling.
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Fig. 6. Distribution of Passenger Travel Costs by Scheme

C. Sustainability Assessment
Another core objective of this study is to evaluate and

optimize the environmental sustainability of the system.
Based on the carbon emission model established in Section
3.3, we calculated the total carbon emissions of the three
schemes for one weekday, and the results are shown in
Figure 7. The results consistently indicate that Scheme A
yields the lowest carbon emissions among the three schemes
under the same modeling assumptions, mainly because
collaborative optimization improves shuttle operational
efficiency and increases the substitution of higher-emission
trips by a more attractive multi-modal service chain. This
reduction benefit mainly comes from two aspects: first,
collaborative optimization improves the operational
efficiency of the shuttle system, reducing the empty running
and idling time of vehicles; second, the efficient and
convenient multi-modal service attracts more passengers
who might have originally chosen private cars or ride-hailing,
resulting in significant substitution emission reduction
benefits.

Fig. 7. Comparison of System Carbon Emissions by Scheme

D. Sensitivity Analysis
To test the robustness of the model and provide a

reference for actual operation, we conducted a sensitivity
analysis on the key decision variable of shuttle departure
frequency. We fixed the shuttle network layout and adjusted
the departure frequency of all routes to observe the changing
trends of average passenger waiting time and total system
operating cost. The results are shown in Figure 8. It can be
found that as the departure frequency increases, the average
waiting time of passengers decreases rapidly, but the
marginal benefit of the decrease diminishes. At the same
time, the total operating cost of the system (mainly driver
wages and vehicle energy consumption/depreciation)

increases approximately linearly. There is a clear "elbow" in
the figure, that is, after the departure frequency reaches a
certain value (about 8-10 minutes per trip in the figure),
continuing to increase the frequency has no obvious effect on
reducing the waiting time, but the cost continues to rise
rapidly. This "elbow" area is the optimal range for operators
to trade off between service level and operating cost, and it
also verifies the reasonableness of the equilibrium solution
output by our model.

Fig. 8. Sensitivity Analysis: Service Headway vs. System Performance

VI. DISCUSSION

This chapter provides an in-depth interpretation of the
empirical results, examines the underlying mechanisms
behind the strong performance of the proposed multi-modal
collaborative optimization scheme, and situates the findings
within a broader academic and practical context. The
theoretical contributions, managerial implications, and
limitations of this study are also discussed.

A. Interpretation of Results and Mechanistic Analysis
The case study results clearly demonstrate that the data-

driven multi-modal collaborative optimization scheme
proposed in this study (Scheme A) significantly outperforms
both the single-mode optimization scheme (Scheme B) and
the traditional fixed-route scheme (Scheme C) in terms of
travel efficiency and environmental sustainability. This
superiority is not incidental, but rather stems from several
interrelated synergistic mechanisms.

First, the essence of collaborative optimization lies in
achieving precise matching between supply and demand
across both space and time. Traditional public transport
systems operate under a “fixed supply” paradigm, which
struggles to accommodate dynamic fluctuations in demand,
leading to persistent resource mismatches. In contrast, the
proposed framework uses data-driven methods—specifically
the DBSCAN algorithm— to accurately identify the spatial
origins and destinations of last-mile demand. This enables
shuttle stops to be located closer to actual demand sources,
forming the spatial foundation for efficiency improvements.

More importantly, the framework introduces temporal
coordination by dynamically aligning shuttle departure
frequencies with metro arrival and departure schedules. In
this way, shuttles no longer function as isolated,
mechanically operated services, but rather as an“intelligent
sensor” and an “elastic extension” of the metro system.
By anticipating demand before passengers arrive and
responding promptly after they exit stations, the framework
transforms transfers— traditionally perceived as a weak link
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in the travel chain—into a smooth and attractive component
of the journey. As a result, ineffective waiting time is
substantially reduced, enhancing the overall competitiveness
of public transport.

Second, the multi-objective optimization framework
enables an intrinsic unity between efficiency and
environmental sustainability. Conventional wisdom often
assumes that improving service levels— such as increasing
vehicle frequency— inevitably leads to higher operational
costs and energy consumption. However, this study
demonstrates that system-level collaborative optimization
can achieve a win–win outcome. Scheme A exhibits lower
carbon emissions than Scheme B primarily because of its
higher operational efficiency. Coordinated scheduling
reduces prolonged vehicle idling at transfer hubs and avoids
low-load operations caused by timetable mismatches,
thereby lowering energy consumption per passenger-
kilometer.

At a broader level, an efficient, convenient, and reliable
multi-modal public transport system is itself a powerful
catalyst for promoting green travel behavior. When
passengers experience seamless “ door-to-door” public
transport services, their reliance on private cars naturally
decreases. The resulting carbon reduction from this mode
substitution effect far exceeds the marginal energy savings
achievable through technological improvements in a single
transport mode. This insight also provides the theoretical
justification for incorporating substitution-based carbon
reduction benefits into the emission calculations of the
proposed model.

B. Comparison with Existing Research and Contributions
When situated within the broader literature, the primary

theoretical contribution of this study lies in bridging a well-
recognized research gap. As highlighted in the literature
review, prior studies have either focused on the micro-level
optimization of shuttle services [7, 20] or on macro-level
coordination within multi-modal transport systems [23, 24],
but rarely combined the two effectively. This study integrates
the refined, data-driven design of shuttle services—including
stop selection, dynamic routing, and variable frequency
scheduling—into a comprehensive multi-modal collaborative
optimization framework. In doing so, it advances last-mile
research from isolated “ point optimization” to “ chain
collaboration, ” and ultimately to system-wide network
synergy.

Compared with the pioneering work of Shu et al. (2021)
[7], this study inherits the data-driven design philosophy but
significantly expands both the system boundary and
optimization objectives. While Shu et al. focused primarily
on designing efficient shuttle services, this study
conceptualizes the shuttle as an interactive component within
a broader multi-modal ecosystem, explicitly modeling its
interactions with metro systems and shared bicycles.
Furthermore, by incorporating carbon emissions as an
endogenous optimization objective, the findings are more
aligned with contemporary sustainability imperatives.

Relative to studies centered on traditional bus – rail
timetable coordination [23], this research focuses on more
flexible and demand-responsive feeder services. Although
this leads to a more complex optimization model, it also

reflects the emerging trend toward on-demand and adaptive
mobility services in future urban transport systems.

C. Managerial Implications
The findings of this study offer clear and actionable

guidance for urban transport authorities and public transport
operators.

First, embracing data-driven decision-making is essential.
Urban transport managers should move away from
experience-based planning and work toward integrated data-
sharing platforms that connect metro systems, buses, shuttle
services, and bike-sharing operators. Only through multi-
source data integration can the complete travel chain be
accurately understood and effectively optimized.

Second, operators should move beyond single-mode
thinking and actively pursue integrated service design.
Shuttle service planning should be closely coordinated with
metro timetables, and operational collaboration should be
institutionalized. From a user perspective, integrated
ticketing schemes and unified travel applications— such as
“metro + shuttle” packages— can provide a seamless
Mobility-as-a-Service (MaaS) experience.

Third, policy incentives should be used to encourage
green transfer behavior. Governments can promote efficient
and low-carbon feeder services through subsidies, right-of-
way priority, and regulatory support. At the same time,
incentive mechanisms such as fare discounts or carbon
credits can encourage passengers to choose green travel
combinations like “walking/cycling + public transport,”
generating collective benefits for society, operators, and
individuals.

D. Research Limitations
Despite its contributions, this study has several

limitations that warrant further investigation.

First, the model assumes homogeneous passenger
behavior, treating all travelers as minimizing generalized
travel costs. In reality, passengers differ in preferences, value
of time, and comfort sensitivity. Future research could
incorporate discrete choice models to capture behavioral
heterogeneity more realistically.

Second, the study adopts a deterministic demand
assumption, relying on historical data without fully
accounting for daily demand variability or disruptions such
as extreme weather or traffic incidents. Introducing
stochastic or robust optimization approaches would enhance
system resilience under uncertainty.

Third, data limitations remain. Although multi-source
data were used, certain modes— such as ride-hailing and
taxis—were not included, and actual transfer waiting times
could not be directly observed. Access to more
comprehensive datasets would improve model accuracy.

Finally, the framework provides a static optimal solution
for a given period. Since urban transport systems evolve
dynamically, future research could explore rolling or
adaptive optimization frameworks that continuously learn
from new data and adjust service strategies accordingly.

VII. CONCLUSION
In the face of increasingly severe urban transportation

challenges, the “ last-mile” problem has emerged as a
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critical factor in enhancing the overall efficiency of public
transport systems and advancing the sustainable development
of urban mobility. Addressing the common limitations of
existing last-mile solutions— such as a single-mode focus,
insufficient intermodal coordination, and limited
consideration of environmental impacts—this study proposes
and validates a data-driven multi-modal collaborative
optimization framework. The framework systematically
integrates three core components: travel demand discovery,
multi-modal connection network construction, and
collaborative optimization, with the goal of simultaneously
improving travel efficiency and environmental sustainability
in last-mile transportation.

The central contribution of this research lies in the
development of a multi-objective optimization model that
jointly minimizes total passenger travel time and total system
carbon emissions. Beyond refining the internal design of
shuttle services— including stop selection, dynamic routing,
and departure frequency optimization — the model
innovatively enables real-time coordination with other
transport modes such as metro systems and shared bicycles.
This represents a conceptual shift from isolated, single-tool
optimization toward a holistic, ecosystem-oriented approach
to multi-modal transport collaboration. An empirical case
study conducted in a representative Transit-Oriented
Development (TOD) area in Shenzhen, China, demonstrates
the effectiveness of the proposed framework under a fully
reproducible experimental setting. The results indicate that,
compared with traditional fixed-route or single-mode
optimization strategies, the collaborative approach
substantially reduces passengers’ average total travel time
while significantly lowering system-wide carbon emissions,
achieving a clear win– win outcome in terms of service
performance and environmental benefits.

In summary, this study confirms that data-driven multi-
modal collaboration offers an effective and practical pathway
for addressing the last-mile problem in large cities and for
building efficient, convenient, and low-carbon urban
transportation systems. The findings provide urban transport
planners and operators with a scientifically grounded and
operationally feasible decision-support tool, while also
contributing new perspectives and theoretical insights to the
academic literature. Future research can build upon this
foundation by incorporating passenger behavioral
heterogeneity, accounting for stochastic travel demand, and
exploring the integration of emerging technologies—such as
autonomous vehicles— into the multi-modal collaborative
framework, thereby further advancing urban transportation
systems toward a more intelligent, greener, and resilient
future.
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