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Abstract—The energy transition is a central challenge in
addressing global climate change, yet its inherent complexity
presents unprecedented difficulties for decision-makers at all
levels. Existing decision-support tools tend to focus on isolated
technical or economic indicators and often lack effective
integration of multi-dimensional and heterogeneous data,
systematic consideration of user interaction, and the in-depth
use of visualization design as a cognitive enabler. As a result,
decision-makers frequently struggle to efficiently and
accurately extract critical insights from large and complex
datasets.

To address this gap, this study proposes a multi-criteria
assessment framework that integrates visualization design
innovation with data-driven decision-making. The framework
combines the Analytic Hierarchy Process (AHP) to determine
the weights of evaluation dimensions with the PROMETHEE
IT method to rank decision alternatives, thereby establishing a
four-dimensional comprehensive evaluation system
encompassing Visualization Quality, User Experience, Decision
Efficacy, and Technological Innovation. The effectiveness and
feasibility of the framework are validated through an empirical
analysis of 15 representative countries, selected according to
their energy structures, economic development levels, and
degrees of digitalization.

The core finding of the study is that systematic innovation
in visualization design can significantly enhance the efficiency,
transparency, and overall quality of data-driven decision-
making. Building on this insight, the study proposes a novel
Energy Transition Visualization-based Decision Readiness
Index (ET-VDRI). Through quantitative ranking and cluster
analysis of the 15 countries, the framework clearly identifies
the distinctive strengths and potential limitations of different
nations in leveraging visualization tools to support energy
transition decisions.

The value of this research lies in offering a new human-
centered paradigm for the evaluation and design of decision-
support tools aimed at energy policymakers, industry investors,
and technology developers worldwide. By bridging the gap
between raw data and actionable insight, the proposed
framework promotes the development of more scientific,
efficient, and inclusive tools for planning energy transition
pathways, thereby contributing to the acceleration of global
sustainable development.
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[. INTRODUCTION

The global energy system stands at a historic crossroads,
as the transition toward a sustainable and low-carbon model
has become a shared consensus and central agenda of the
international community [1]. This transformation spans
multiple dimensions — including technology, economics,
society, and policy — and its inherent complexity and
uncertainty place exceptionally high demands on decision-
making processes [2]. In this context, data-driven decision-
making approaches have attracted significant attention. The
rapid expansion of energy-related data, ranging from real-
time power grid monitoring to detailed insights into
consumer energy behavior, offers unprecedented
opportunities to better understand and steer this profound
transition [3]. However, the sheer volume of data does not
automatically translate into better decisions; on the contrary,
it can lead to “ information overload” and “ analysis
paralysis. > Transforming vast, multi-dimensional energy
datasets into intuitive and actionable decision insights has
therefore emerged as a critical bottleneck in enabling a
smooth energy transition.

Accordingly, the central research question addressed in
this study is: How can systematic and innovative
visualization design transform complex energy data into
intuitive, actionable decision insights, thereby significantly
improving the scientific rigor, efficiency, and inclusiveness
of energy transition decision-making?

To date, both academia and industry have made
substantial progress in energy decision support. Energy
system models (ESMs) are widely used to simulate future
scenarios under alternative policy and technology pathways
[4], while dashboards and geographic information systems
(GIS) are commonly employed to monitor the operational
status of energy systems [5]. In parallel, multi-criteria
decision analysis (MCDA) methods—such as the Analytic
Hierarchy Process (AHP) and PROMETHEE — have been
applied to evaluate the feasibility and sustainability of energy
projects [6].

Despite these advances, notable limitations remain. First,
many decision-support tools treat data visualization merely
as the “last mile” of result presentation—a passive and
auxiliary display function— while neglecting its role as an
active cognitive tool and a catalyst for decision-making [7].
Second, existing tools are often technology-centric and
insufficiently attuned to the cognitive habits and interaction
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needs of decision-makers, particularly those without
technical backgrounds, resulting in tools that are frequently
perceived as “ difficult to understand” and “difficult to
use 7 [8]. Finally, there is a lack of a comprehensive
framework for holistically evaluating the effectiveness of
energy decision-support tools, especially one that explicitly
incorporates the critical human - computer interaction

dimension of visualization design.

To overcome these challenges, this study seeks to
develop a theoretical framework and evaluation model that
facilitates the transition “ from data to insight. ”  The
specific research objectives are threefold. First, to construct
an energy transition decision-support framework that
integrates visualization design innovation by combining data,
models, visualization, and user interaction within a human-
centered design philosophy. Second, to develop a multi-
dimensional Energy Transition Visualization-based Decision
Readiness Index (ET-VDRI) that quantifies the capacity of a
country or region to support energy decision-making through
visualization tools. Third, to validate the effectiveness of this
index through empirical analysis of representative countries
worldwide and to propose concrete and feasible pathways for
countries at different stages of development to enhance their
data-driven decision-making capabilities.

The remainder of this paper is organized as follows.
Section 2 reviews the relevant literature; Section 3 presents
the research framework and methodology; Section 4 reports
the evaluation results for the 15 countries; Section 5
discusses the findings and compares them with existing
studies; and Section 6 concludes the paper and outlines
directions for future research.

II. LITERATURE REVIEW

To establish a solid theoretical foundation for this study,
we conducted a systematic review of the core literature
across several closely related fields, including energy
transition, data-driven decision-making, energy data
visualization, user-centered design, and multi-criteria
decision analysis.

Energy transition and data-driven decision-making are
central themes in contemporary energy research. The energy
transition is not simply a matter of technological substitution
but rather a complex socio-technical transformation
involving policy frameworks, market mechanisms, and
public acceptance [9]. Within this context, data-driven
decision-making is widely regarded as a key enabler for
improving both the quality and efficiency of decisions. For
instance, Yang et al. (2023) developed a data-driven platform
to predict and evaluate the future impacts of energy transition
policies in smart regions, demonstrating the strong potential
of data for policy simulation and assessment [10]. Similarly,
decision-making related to large-scale building energy
retrofits increasingly relies on data-driven approaches to
manage their inherent complexity [11]. These studies
underscore the pivotal role of data in the energy transition,
while also suggesting that without effective analytical and
interpretive tools, data alone cannot be readily transformed
into decision-making insight.

Energy data visualization serves as the critical bridge
between data and decisions. With the rapid expansion of data
volumes in recent years, visualization technologies have
been increasingly adopted in the energy sector. Chen and
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Chen (2021) provided a comprehensive review of data
visualization applications in smart grids and low-carbon
energy systems, covering aspects such as information design,
enabling technologies, and visualization tools [12].
Visualization  practices range from  macroscopic
representations of global energy flows, such as Sankey
diagrams, to microscopic, real-time monitoring of household
energy consumption through dashboards, which have
become essential references for professional energy
management tool development [13]. Nevertheless, many
studies point out that current energy visualization practices
remain largely focused on data presentation, and their
potential for supporting in-depth analysis and interactive
exploration has yet to be fully realized [7]. A notable
exception is the EnergyViz system developed by Alemasoom
et al. (2016), which provides an interactive environment for
exploring trade-offs in energy systems and highlights the
importance of interactivity in enhancing user understanding
[14].

User-centered visualization design offers an effective
pathway for addressing these limitations. Originating from
the field of human — computer interaction (HCI), this design
paradigm places users’ needs, preferences, and cognitive
characteristics at the center of every stage of the design
process [15]. In the energy domain, this implies that
visualization tools should move beyond purely technical
implementation and instead align with the real workflows
and cognitive loads of decision-makers. Qureshi et al. (2025),
through usability testing workshops, examined the interface
design of energy data visualizations for household users and
demonstrated that user-centered design can significantly
improve comprehension and engagement [8]. Similarly, a
usability evaluation by Vera-Piazzini and Scarpa (2025)
targeting expert users in the building energy sector showed
that even professionals benefit from well-designed, human-
centered tools for optimizing energy performance [16].
Collectively, these studies suggest that effective energy
visualization must deeply integrate technical functionality
with user experience.

Multi-Criteria Decision Analysis (MCDA) provides a
systematic methodology for evaluating and integrating these
complex — and often conflicting — dimensions. In energy
planning, MCDA is widely applied to assess the feasibility of
energy technologies, select optimal sites for renewable
energy projects, and balance trade-offs among multiple
stakeholders [17]. Among MCDA methods, the Analytic
Hierarchy Process (AHP) is valued for its ability to
decompose complex problems into hierarchical structures
and to quantify subjective judgments [18]. The
PROMETHEE  family of  methods, particularly
PROMETHEE 11, is frequently used in national and regional
sustainability assessments due to its transparent ranking logic
and its capacity to handle uncertainty [6]. Notably, Neofytou
et al. (2020) combined AHP and PROMETHEE II to
construct an index measuring countries °  readiness for
sustainable energy transitions, providing an important
methodological reference for the present study and aligning
with the broader global consensus on the role of education
and human capital in sustainable development [19].

In summary, although substantial progress has been
achieved across these individual research streams, a
significant gap remains. There is a lack of a comprehensive
framework that systematically integrates visualization design
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innovation as a core evaluation dimension with data-driven
decision-making effectiveness. Existing studies tend to focus
either on the techno-economic analysis of energy systems or
on the interface design of visualization tools, without
connecting the two or assessing a country’ s or region’ s

“soft power” in the energy transition—that is, its ability to
transform data into insight—from a holistic, decision-maker-
centered perspective. This gap is also reflected in recent
global energy transition research, which emphasizes the
urgent need for more effective decision-support tools to meet
ambitious transition goals [20]. The central contribution of
this study lies precisely in addressing this gap by proposing a
theoretical framework and evaluation model that integrates
four key dimensions—visualization design, user experience,
decision support, and technological innovation — while
aligning the resulting index with the core indicators of
contemporary global sustainable development assessment
systems.

III. METHODOLOGY

The objective of this study is to develop a framework that
systematically evaluates the readiness of different countries
to leverage visualization for decision-making in the energy
transition. To achieve this, a multi-level and multi-
dimensional evaluation system is designed, and quantitative
assessment is conducted using Multi-Criteria Decision
Analysis (MCDA) methods. The overall methodology
comprises three core components: construction of the
research framework, calculation of the assessment index, and
data collection and processing.

A. Research Framework

Drawing on theories such as sustainable development
assessment and information systems success models, this
study proposes a comprehensive evaluation framework
consisting of four first-level indicators and twelve second-
level indicators (see Figure 1). The framework is designed to
systematically assess a country ’ s visualization-based
decision readiness in the context of the energy transition
across four key dimensions: Visualization Quality (VQ),
User Experience (UX), Decision Efficacy (DE), and
Technological Innovation (TI).

ET-VDRI Assessment Framework

Data Sourdes

™ ‘ [ voromnc ] [ e ||

Fig. 1. The ET-VDRI Assessment Framework
This framework provides a comprehensive evaluation of

data visualization tools, emphasizing how they contribute to
decision-making in contexts like energy transition, policy
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simulation, or other decision-intensive areas. Here's a
breakdown of each of the four dimensions and their
respective sub-dimensions:

1) Visualization Quality (VQ):

VQI: Visual Encoding Accuracy: This aspect evaluates
whether the visual elements (e.g., charts, graphs, colors)
appropriately and accurately represent the data relationships.
The correct use of colors, shapes, and chart types is essential
for proper data interpretation.

VQ2: Information Density & Clarity: This evaluates
whether a visualization presents enough information in a
limited space without overwhelming the user. It is about
balancing information richness with clarity.

VQ3: Design Aesthetics & Standards: Measures how
visually appealing and professionally designed the
visualization is, ensuring adherence to established design
standards. This could include consistency, layout, color
schemes, and overall visual cohesion.

2) User Experience (UX):

UXI1: Usability & Learning Cost: Evaluates how user-
friendly the tool is and whether it requires a steep learning
curve or complex training for users to operate effectively.

UX2: Interaction Fluency & Responsiveness: This aspect
focuses on how seamlessly users can interact with the tool,
such as zooming, filtering, or drilling down into the data. A
fluid experience is crucial for users to make quick and
effective decisions.

UX3: User Guidance & Interpretability: Measures the
effectiveness of the tool in guiding users and helping them
interpret the visualized data. It assesses whether the tool
offers helpful prompts or explanations that enhance
understanding.

3) Decision Efficacy (DE):

DE1: Insight Discovery Capability: Assesses the ability
of the visualization tool to reveal patterns, trends, or outliers
in the data that might not be immediately obvious. It focuses
on how the tool aids in uncovering hidden insights.

DE2: Scenario Simulation & Predictive Analysis: This
evaluates the tool” s ability to support "What-if" scenarios,
allowing users to simulate different futures under various
assumptions, enhancing the decision-making process.

DE3: Risk Identification & Assessment: Measures
whether the tool helps identify and assess risks, which is
crucial in high-stakes decisions like energy transition
planning, where vulnerabilities in systems, supply chains, or
social factors might emerge.

4) Technological Innovation (TI):

TI1: Data Fusion & Processing Capability: Assesses how
well the tool can integrate different types of data (spatial,
temporal, economic, etc.) from various sources. Multi-source
data integration is key for creating a comprehensive view for
decision-making.

TI2: AI/ML Integration: Evaluates whether AI and
machine learning algorithms are used within the tool to
automate analysis, provide intelligent recommendations, or
enhance user insights.

TI3: Tech Ecosystem & Openness: Measures the
openness of the tool” s technology ecosystem, including the
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activity of open-source communities, the availability of APIs,
and how collaborative the ecosystem is for further innovation
and integration.

This framework seems designed for assessing tools and
technologies that aid decision-making, especially in complex
domains where data visualization and user interaction are
critical. The evaluation of each dimension helps ensure that a
tool is both technically advanced and user-friendly, while
also being effective in enhancing decision-making.

B. Assessment Index Construction

To transform the multi-dimensional qualitative and
quantitative assessments into the Energy Transition
Visualization-based Decision Readiness Index (ET-VDRI),
you have described a robust approach involving AHP
(Analytic Hierarchy Process) and PROMETHEE I
(Preference Ranking Organization Method for Enrichment
Evaluation II). This method integrates two powerful decision
analysis tools to assess and rank countries based on their
decision readiness regarding energy transition visualization.

1) Indicator Weighting: Analytic Hierarchy Process
(AHP)

AHP is used to determine the relative importance
(weights) of each indicator at different levels of the
assessment framework. Here's how it's applied:

a) Constructing the Hierarchy Model:

e Goal Level: The top goal is the composite index (ET-
VDRI).

e Criteria Level: The four first-level indicators (VQ,
UX, DE, TI) form the next level.

e Sub-Criteria Level: The 12 second-level indicators
(e.g., VQI, UX2, DE3, etc.) make up the lowest level.

This hierarchical structure allows you to see how each
dimension (VQ, UX, DE, TI) contributes to the overall
readiness index.

b) Expert Questionnaire Survey:
The pairwise comparison matrices are created based on
an established protocol and rubric that aligns with the
definitions of each indicator.

Two independent researchers complete the pairwise
comparisons for each level (goal, criteria, and sub-criteria)
using a 1 — 9 scale, which measures the relative importance
of one indicator over another. For instance, a comparison
might ask how much more important Visualization Quality
(VQ) is compared to Technological Innovation (TT).

The matrices ensure that the experts’ judgments reflect
the real-world significance of each indicator.

¢) Calculating Weights and Consistency Check:

The pairwise comparison matrices are used to calculate
the local weights (for each indicator within its category) and
global weights (for each indicator's contribution to the
overall goal, the ET-VDRI).

A consistency check is performed by calculating the
consistency ratio (CR). This ensures that the pairwise
judgments are logically consistent. If the CR exceeds 0.1, the
matrices are revised to improve consistency.
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After ensuring consistency, the final weights for each
indicator are computed, and these weights reflect the relative
importance of each dimension and sub-dimension in the final
ET-VDRI.

2) Country Ranking: PROMETHEE II Method

After determining the indicator weights, the
PROMETHEE II method is used to rank the selected
countries. Here's how it works:

a) Determining the Preference Function:

For each second-level indicator (e.g., VQI1: Visual
Encoding Accuracy, UX2: Interaction Fluency), a preference
function P(a,b) is defined. This function determines how
much country a outperforms country b on that indicator. The
preference value ranges from 0 to 1, where 1 means country
a is vastly superior to country b, and 0 means no superiority.

The choice of the preference function depends on the
data characteristics of each indicator:

e Benefit-type indicators: Higher values are preferred
(e.g., better visualization quality).

e Cost-type indicators: Lower values are preferred (e.g.,
lower learning cost).

b) Calculating the Preference Index:

The preference index 7 (a,b) of country a relative to
country b is calculated by taking the weighted average of all
individual preference functions for each indicator. The
weights used here are the global weights determined from
AHP.

This step gives a comprehensive view of how one
country compares to another across all indicators.

¢) Calculating the Outgoing and Incoming Flows:

The positive outgoing flow ®*(a) represents how much
country a outperforms all other countries across all indicators.

The negative incoming flow ®~(a) represents how much
country a is inferior to all other countries.

These flows give a measure of a country *~ s overall
relative performance, considering its strengths and
weaknesses in all the indicators.

d) Calculating the Net Flow and Ranking:

The net flow ®@(a)= ®*(a) — O (a) is calculated for
each country. A higher net flow indicates that the country is
performing better overall in terms of energy transition
visualization-based decision readiness.

Countries are then ranked in descending order based on
their net flow values, and the final ET-VDRI ranking is
derived. The country with the highest net flow is deemed the
most ready for energy transition decision-making.

Summary of Steps:
Indicator Weighting (AHP Method):

e Construct a hierarchical model with goal, criteria, and
sub-criteria levels.

e Conduct pairwise comparisons using expert judgment
to assign weights to the indicators.

e Perform a consistency check and compute the final
weights for each indicator.
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Country Ranking (PROMETHEE II Method):

e Define preference functions for each second-level
indicator based on its characteristics.

e Calculate the preference index for each country based
on the weighted preference functions.

e Determine the positive and negative flows for each
country.

e Compute the net flow for each country and rank them
based on their performance.

By combining AHP and PROMETHEE 1I, this
methodology enables a nuanced and multi-dimensional
ranking of countries based on their Energy Transition
Visualization-based Decision Readiness, considering both
subjective expert judgments (through AHP) and objective
evaluations of countries' relative performance (through
PROMETHEE II).

ET-VDRI
Comprehensive Index

UXx
(w=0.277)

AN

Q
(w=0.142)

N

DE T
(w=0.385) (w=0.196)

/N /S

PEE EEE FEE GE6

Fig. 2. AHP Hierarchy Structure for ET-VDRI Assessment Indicators

C. Data Collection and Processing

To ensure the objectivity and validity of the assessment
results, we followed a rigorous data collection and
processing procedure.

1) Country Selection:

Selecting a diverse and representative sample of 15
countries is key for ensuring the robustness and
generalizability of your findings. The criteria for selection—
geographical distribution, economic development level,
energy structure, and digital transformation progress—ensure
that the sample encompasses a wide variety of contexts. Here’
s why these factors are important:

a) Geographical Distribution: Ensures that countries
from different parts of the world, each with varying
challenges and opportunities in energy transitions, are
considered.

b) Economic Development Level: Including both
developed countries and emerging economies allows for a
broader comparison of how these countries address energy
transitions based on their capabilities and challenges.

¢) Energy Structure: Countries with different energy
mixes (e.g., fossil fuel-dependent versus renewable energy-
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heavy) will have unique challenges and opportunities in
energy transitions. This diversity will lead to richer insights.
d) Digital Transformation Progress: Countries at

different stages of digital transformation will show varying
capabilities in integrating technologies like AI/ML, which
are crucial for modernizing energy systems.

2) Data Sources:

Your use of diverse and credible data sources strengthens
the objectivity of your analysis. Here's how each data source
contributes:

a) International ~Organization Databases: These
sources (e.g., IEA, IRENA, WEF) provide trusted, high-
quality, and globally comparable data. They often have
comprehensive energy production, investment, and policy
data that can offer valuable insights into energy transitions
across countries.

b) National Official Statistics: These provide locally
relevant and up-to-date information that might not be
available in international datasets. They are crucial for
understanding the specific energy landscape, policies, and
developments in each country.

¢) Academic and Market Research: Using academic
literature and market research helps contextualize the
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findings and brings in expert analyses of energy trends,
technologies, and policy impacts. Indicator | Indicator | Definitio Data
g . P v ump . . Code Name n Source Type
d) Online Platforms and Code Repositories: These
data sources are increasingly valuable for evaluating Rubric-
technological  advancements,  particularly in  data based
visualization and Al integration, which are important for Accuracy | scoring
energy decision-making.  Open-source projects and Olf visual | (two
evaluations from platforms like GitHub can also help assess fcir:ligts ;Edepende
how countries are adopting digital tools for energy Vol glsuzl, colors, reviewers | Qualitativ
management and transition. Q Arézflr::i shapes) in | ; criteria | e
3) Data Processing and Quantification: fgpreszzg 3EShors
The 'data procesging appro.ach ensures that bqth relationsh | document
quantitative and qualitative indicators are treated with ips ed  for
appropriate methods for accuracy and consistency. Here’ s a replicatio
breakdown of how each type is processed: n)
a) Quantitative Indicators: &:‘SZSC'
For indicators with directly measurable data (e.g., the Eatlance scoring
number of AI/ML-related papers or projects), normalization iffzvrf;;i (two
is applied to bring the data into a consistent scale (0 to 100). | on independe
This is important for: Informati |4 hness | Pt o
vQ2 on and reviewers Qualitativ
e Uniform comparison: Ensuring that values from ?Legf”Y layout ; dcme”a ¢
different indicators with varying units and scales can Y Clarity i 3Echors
be compared meaningfully. Zilsualilati document
. . . . fi
e Standardized representation: The normalized scores interfaces | ¢4 . for
. ' . . replicatio
make it easier to combine different types of data (e.g., n)
Al integration and energy production data) into a
composite index. EUbféC'
ase
b) Qualitative Indicators: Overall Etcvsging
For indicators that require subjective judgment (e.g., aesthetic | . depende
Design Aesthetics & Standards), you employ a rule-based Design appeal, at
scoring rubric with clearly defined criteria. This structured vos Aesthetic g;?if:;sm reviewers | Qualitativ
approach is important for: s & [ ; criteria | e
Standards and
e Reducing bias: Having clearly defined criteria for ?fhzrg:; anchors
scoring minimizes personal bias in the evaluation standards | document
Process. f;lplicatifgr
¢ Reproducibility: The rubric ensures that the scoring )
process is consistent, transparent, and can be Rubric-
reproduced by other researchers. based
T . . scoring
e Auditability: Recording the final scores with an Ease of | (two
agreement statistic (to resolve any disputes between learning independe
reviewers) strengthens the credibility of the results. It Usability | and nt
also ensures that disagreements between reviewers Uxi & operating | reviewers | Qualitativ
are transparently documented, adding an extra layer Leaning | the tool | ; criteria | e
freliabilit Cost without and
orre Y- extensive anchors
Using two independent reviewers for coding and training Sgcumefr(‘:r
resolving disagreements through discussion is an excellent replicatio
approach to maintaining objectivity and ensuring the 1)

consistency of qualitative data. This approach, supported by
an agreement statistic, enhances the reliability of subjective

assessments.
TABLE I. ET-VDRI SECOND-LEVEL INDICATOR SYSTEM,
DEFINITIONS, AND DATA SOURCES
Indicator | Indicator Definitio Data Tvpe
Code Name n Source yp
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Indicator | Indicator Definitio Data Tvpe
Code Name n Source yp
Lightweig
ht,
System scriptable
performa
response
. nce test
Interactio speed and
n Fluency | smoothne lsltrell(rllfirardiil Quantitati
ux2 & ss during od ve
Responsi interactiv device/net
veness e
operation work
sp profile
(replicatio
n  scripts
provided)
Rubric-
based
scoring
Availabili | (two
User ty of | independe
; guidance, | nt
Guidance . o
prompts, reviewers | Qualitativ
UX3 & o
and ; criteria | e
Interpreta .
bilit explanati and
y ons for | anchors
users document
ed for
replicatio
n)
Rubric-
based
scoring
Ability to | (two
help users | independe
Insight discover nt
Discovery | hidden reviewers Qualitativ
DE1 o o
Capabilit patterns, ; criteria | e
y trends, and
and anchors
anomalies | document
ed for
replicatio
n)
Publicly
verifiable
feature
Support checklist
Scenario for based on
. . "What-if" official
Simulatio . o
analysis document | Quantitati
DE2 n & .
. and future | ation and | ve
Forecasti X
i scenario observabl
£ simulatio | e
n functions
(checklist
published
)
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Indicator | Indicator Definitio Data T
Code Name n Source ype
Rubric-
based
scoring
Capabilit (two
Risk y to independe
Identificat 1dent1fy nt' o
DE3 ion & p.otentlal~ reviewers Qualitativ
Assessme risks in | ; criteria | e
nt energy and
transition anchors
pathways document
ed for
replicatio
n)
Ability to
integrate
Data multi-
Fusion & | source z}VlEtljl
I Processin | heterogen Co(;n;e Gt Quantitati
g eous data ve
Capabilit (spatial, \I;enesrst
y temporal, €po
economic
)
Open
bibliomet
Integratio | ric
n of | sources
AI/ML (e.g.,
algorithm | OpenAlex
™ ﬁllt/el\g/[r];tio s for | /Crossref) | Quantitati
n automate + GitHub | ve
d analysis | public
and metadata
recomme analysis
ndations (pipeline
document
ed)
Activity
of open-
source
Tech f:ommunit GitHub
Ecosyste ies, API | Stars, API Quantitati
TI3 availabilit | document
m & . ve
Openness o aqd athn
interdisci review
plinary
collaborat
ion
IV. RESULTS

1) Decision Efficacy (DE) — Weight: 0.385:

Highest Weight: The fact that Decision Efficacy received
the highest weight reflects the experts' consensus that the
ultimate value of any visualization tool lies in its ability to
enhance decision-making. This dimension is seen as the most
critical for achieving meaningful outcomes in energy
transition decisions, as it directly affects the quality and
depth of decisions made based on the data visualization.

Focus Areas: The sub-indicators under DE, such as
Insight Discovery Capability, Scenario Simulation, and Risk
Identification, are likely considered crucial for uncovering
patterns, simulating potential scenarios, and assessing
risks — all essential components for informed decision-
making in energy transitions.
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2) User Experience (UX) — Weight: 0.277:

Importance of "Human-Centered" Design: The User
Experience dimension comes in second with a weight of
0.277. This highlights the growing recognition of the
importance of usability and ease of interaction with the
visualization tool. A tool that is easy to use and intuitively
guides users to understand complex data is essential,
especially in a context like energy transition, where the
decisions made can be highly technical and data-driven.

Impact on Decision-Making: The UX dimension includes
sub-indicators like Usability & Learning Cost and Interaction
Fluency & Responsiveness, which are integral in ensuring
that decision-makers can interact smoothly and effectively
with the tool, reducing cognitive load and enhancing decision
quality.

3) Technological Innovation (TI) — Weight: 0.196:

Moderate Weight, but Critical for Future Readiness:
Technological Innovation receives a moderate weight of
0.196, underscoring that while it” s essential for pushing the
boundaries of data visualization, AI/ML integration, and data
fusion capabilities, its importance is seen as supplementary
to the ability of the tool to drive decision efficacy and offer a
good user experience.

Importance of Emerging Technologies: The sub-
indicators under TI, like AI/ML Integration and Data Fusion

& Processing Capability, are especially relevant for enabling
(a) First-Level Indicator Weights

Visualization
Quality (vQ)

Decision Efficacy
(DE)

Technological

19.6% Innovation (TI)

User Experience
(UX)

Fig. 3. Distribution of ET-VDRI Indicator Weights

B. Raw Data of Country Assessments

We conducted a comprehensive data collection and
quantitative assessment for the selected 15 countries
according to the indicators and data sources defined in Table
1. The scores for all second-level indicators were normalized
to a scale of [0, 100] to facilitate subsequent comparison and
calculation. The complete assessment data matrix is shown
in Table II. This table forms the basis for all subsequent
analyses.

NORMALIZED SCORES OF 15 COUNTRIES ON ET-VDRI
SECOND-LEVEL INDICATORS

TABLE II.
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DEL: Insight Discovery

DE2: Scenario Simulation

DE3: Risk Assessment

UX2: Interaction Fluency

UX3: User Guidance

TI2: AlI/ML Integration

TI3: Tech Ecosystem

VQ1: Visual Encoding

VQ2: Information Density

VQ3: Design Aesthetics

more advanced predictive analytics, automation, and
integration of diverse datasets—all of which are becoming
increasingly important for modern energy transition planning.

4) Visualization Quality (VQ) — Weight: 0.142:

Foundation for Clarity and Accuracy: Visualization
Quality received the lowest weight (0.142), yet it remains
foundational to the entire framework. A visualization tool
must represent data clearly and accurately for users to
understand and act on it. Although this dimension is
weighted lower, its significance should not be
underestimated—poor quality in the visuals will undermine
the utility of even the most advanced decision-making tools.

Key Sub-Indicators: Sub-indicators like Visual Encoding
Accuracy, Information Density & Clarity, and Design
Aesthetics & Standards contribute to ensuring that data is
presented in a manner that is both accurate and
understandable.

Among the 12 second-level indicators, "Insight
Discovery Capability (DE1)" and "Scenario Simulation &
Predictive Analysis (DE2)" had the highest global weights,
once again confirming that decision support is the top
priority of the assessment. At the same time, "Usability &
Learning Cost (UX1)" also received a high weight,
indicating that the ease of use of a tool is crucial for its
promotion and application in the real world.

(b) Second-Level Indicator Global Weights
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C. ET-VDRI Comprehensive Ranking

By combining the raw scores in Table II with the 12
indicator weights in Figure 3, we used the PROMETHEE II

Indi | 0.4 0.4 0.4 0.5 0.4 0.4 0.0 0.4

method to calculate the net flow value @ for each country, Sou

and from this, we derived the final ET-VDRI comprehensive ;3 |t 04 | 04 |04 |04 |03 |04 |00 |03
scores and rankings. The results are shown in Table III and Afri | 00 | 33 | 40 | 60 |98 | 52 | 54 | 98
Figure 4. ca
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From the ranking results, the Nordic countries Sweden 14
ya 47 63 80 80 56 12 56 56

and Denmark ranked first and second, demonstrating strong

comprehensive  strength in  energy data openness, Ind
. . . : : : o 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.3

technological innovation, and high-quality visualization 15 one
.. . . 20 33 40 47 12 68 56 12

applications. Developed economies such as Germany, the sia

United Kingdom, and the United States followed closely,
forming the second tier. China, as a leading emerging
economy, performed outstandingly in technological
innovation capability but still has room for improvement in
user interaction experience and data visualization quality,
ranking seventh. Other BRICS countries such as India, Brazil,
and South Africa were in the middle to lower ranks, showing
great development potential. Some developing economies,
such as Kenya and Indonesia, ranked lower on most
indicators, reflecting the challenges they face in data
infrastructure and technological application.
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ET-VDRI Comprehensive Ranking of 15 Countries
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Fig. 4. Chart of ET-VDRI Comprehensive Ranking of 15 Countries

D. Cluster Analysis and Pattern Recognition

To gain a deeper understanding of the development
patterns of different countries, we conducted a K-means
cluster analysis based on the scores of each country on the
four first-level indicators (VQ, UX, DE, TI). The results
clearly divided the 15 countries into four different types (see
Figure 5):

e Comprehensive Leaders: Including Sweden and
Denmark. These countries performed excellently in
all four dimensions, with particularly obvious
advantages in user experience and decision support
efficacy, representing the best practices in energy
visualization decision-making today.

e Technology-Driven Innovators: Including the United
States, China, and Germany. These countries scored
very high in technological innovation capability (TI),
possessing strong Al and data processing capabilities,
but they were slightly lacking in translating
technological advantages into a smooth user
experience (UX) and universally applicable decision
support tools.

e Balanced Practitioners: Including the United
Kingdom, Canada, France, and Australia. The
performance of these countries was relatively
balanced across the four dimensions, with no
particularly outstanding strengths or obvious
weaknesses, and they are in a state of steady
development.

e Potential Followers: Including Brazil, India, South
Africa, Spain, Italy, Kenya, and Indonesia. These
countries scored lower in most dimensions, with a
particularly weak foundation in technological
innovation and data visualization quality. However,
some of these countries (such as India and Brazil)
have shown some development potential in specific
application areas.
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Cluster Analysis of 15 Countries Based on ET-VDRI Dimensions

DE + Tl Dimension Score
(Decision Efficacy & Technology)

VQ + UX Dimension Score
(Visualization & User Experience)

Fig. 5. Cluster Analysis of 15 Countries Based on ET-VDRI Dimensions

E. Sensitivity Analysis

To test the robustness of the assessment results, we
conducted a sensitivity analysis by adjusting the weights of
key indicators and observing their impact on the final
rankings. The results showed that the rankings of the top
three countries (Sweden, Denmark, Germany) and the
bottom three countries (Italy, Kenya, Indonesia) were very
stable. Even when the weights fluctuated within a range of
+20%, their rankings were basically unaffected. This
indicates that the leading or lagging positions of these
countries in the ET-VDRI are structural. However, the
rankings of some countries in the middle (such as France,
Australia, Brazil) were more sensitive to changes in weights,
especially when the weights of the "User Experience" and
"Technological Innovation" dimensions were adjusted, their
rankings would fluctuate by 1-2 positions. This suggests that
the comprehensive strengths of these countries are relatively
close, and their future development paths and policy
priorities will have a significant impact on their relative
competitiveness (Figure 6).

Sensitivity Analysis: Ranking Stability Under Weight Variations

Countries
8
Rank Position

Weight Adjustment Scenarios

Fig. 6. Sensitivity Analysis: Ranking Stability Under Weight Variations

V. DISCUSSION

This section provides an in-depth interpretation of the
foregoing assessment results, compares them with existing
related research, and explores the theoretical contributions,
practical implications, limitations, and future research
directions of this study.
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A. Interpretation of Results

The comprehensive ranking and cluster analysis of the
ET-VDRI reveal profound patterns in global energy
transition visualization-based decision-making capabilities.
The leading position of Nordic countries, particularly
Sweden and Denmark, as "Comprehensive Leaders," is not
accidental. It is attributable to their long-standing open
government data policies, high level of digitalization, strong
design culture, and continuous focus on user experience in
public services [18]. These countries not only possess
advanced technology but, more importantly, have
successfully built an innovative ecosystem that closely
integrates technology, design, and public decision-making.

In contrast, "Technology-Driven" countries like the
United States and China, while investing heavily in the R&D
of core technologies such as Al and big data and
demonstrating strong technological innovation capability
(TI), seem to have a certain "translation gap" in converting
these cutting-edge technologies into easy-to-use, experience-
smooth tools for non-professional decision-makers. This may
reflect a characteristic of their innovation systems where
technology orientation is stronger than user orientation. In
other words, they are adept at "building good engines" but
still have room for improvement in "building cars that are
easy to drive."

"Balanced Practitioners" represent the common situation
of most developed economies, which are making steady
progress in all dimensions but lack particularly outstanding
advantages. "Potential Followers," on the other hand, face a
dual challenge: they must not only strengthen their "hard
power" in data infrastructure and technological R&D but also
cultivate "soft power" in data culture and design capabilities.
However, these countries also have a late-mover advantage,
as they can learn from the experience of leading countries
and leapfrog certain technological development stages to
directly adopt more advanced, more user-centered
visualization decision-making paradigms.

B. Comparison with Existing Research

To validate the uniqueness and added value of the ET-
VDRI, we compared its ranking results with the World
Economic Forum's "Energy Transition Index" (ETI) [19] and
the UN Sustainable Development Solutions Network's
"Sustainable Development Goals Index" (SDGI) [20] (see
Figure 7).

Comparison of ET-VDRI with Energy Transition Index (ETI) and SDG Index (SDGI)
10
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dy
& 3
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E |
a | |
! - ‘ ‘ ‘ ‘
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Py < & & o o & & o o « R
o E o B 8
&

Countries

(0-1)

Normalized Sc

Fig. 7. Comparison of ET-VDRI with Energy Transition Index (ETI) and
SDG Index (SDGI)

The comparison reveals a certain correlation in the macro
trends between the ET-VDRI and the ETI and SDGI. That is,
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countries that rank high in these indices (such as the Nordic
countries) also generally perform well in the ET-VDRI. This
suggests that a country's overall progress in energy transition
and sustainable development is a good foundation for
developing advanced data decision-making capabilities.
However, there are also significant differences among the
three, and these differences precisely highlight the unique
perspective of this study.

For example, some countries that rank high in the ETI
due to their large installed capacity of renewable energy may
not have a prominent ranking in our ET-VDRI. This could
mean that although the country has made achievements in
the "hardware" of energy infrastructure, it is lacking in the
"software" capabilities of refined management, policy
simulation, and risk assessment using data and visualization
tools. Similarly, a country may have a high overall score in
the SDGI but perform mediocrely in terms of transparency
and public participation in specific energy decisions (which
are related to our UX and DE dimensions). These differences
indicate that the ET-VDRI is not simply a repetition of
existing indices but a useful supplement and deepening of the
assessment of a country's energy transition readiness from
the new dimension of "decision-making capability,"
especially from the specific perspective of "visualization-
based decision-making."

To more intuitively display the characteristics of different
types of countries, we have drawn four-dimensional
assessment radar charts for typical representatives of the four
clusters (see Figure 8).

Four-Dimensional Assessment Profiles of Representative Countries

wed USA
(Comprehensive Leader) (Technology-Driven)
ux ux

DE vQ DE vQ

m m

India
(Potential Follower)
ux ux

m m

Fig. 8. Four-Dimensional Assessment Profiles of Representative Countries

C. Theoretical and Practical Implications
The contributions of this study are multifaceted.

At the theoretical level, we have for the first time
systematically integrated "visualization design" and "user
experience" as core variables into the evaluation framework
of energy decision support systems. This not only extends
traditional Technology Acceptance Models (TAM) and
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Information Systems Success Models but, more importantly,
provides a new application scenario and evaluation paradigm
for the field of information visualization, promoting the
evolution of the field from focusing on "how to see more
clearly" to "how to decide more wisely."

At the practical level, this study provides clear guidance
for governments, energy companies, and technology
developers:

e For policymakers: The ET-VDRI can serve as a
diagnostic tool to help them identify the weak links in
their country's data-driven decision-making chain,
thereby formulating more targeted improvement
strategies. For example, should priority be given to
investing in data infrastructure, or should more user-
centered design research be funded? Our framework
provides a basis for such decisions.

e For energy companies: When making cross-border
investments or market expansions, the ET-VDRI can
serve as a reference indicator for assessing the "data
environment" and "decision-making maturity" of the
target market, helping companies to better evaluate
investment risks and opportunities.

e For technology developers: Our four-dimensional
framework provides clear design goals and evaluation
criteria for designing the next generation of energy
visualization decision-making tools. Developers
should recognize that mere technological stacking
does not guarantee success; a deep understanding of
user experience and real decision-making processes is
equally important.

D. Limitations and Future Research

Although this study strives for rigor, it still has some
limitations. First, the availability and comparability of data is
a persistent challenge. The quantification of some second-
level indicators (especially those involving user experience
and design quality) relies on rubric-based human coding.
While the rubric, double-coding procedure, and agreement
reporting improve transparency and reproducibility, some
degree of subjectivity cannot be completely eliminated.
Second, the sample size of countries in this study (15) is
relatively limited. Although representative, a larger-scale
study might reveal richer patterns. Finally, our static
assessment model fails to fully capture the dynamic
evolutionary characteristics of the energy visualization
decision-making ecosystem.

Looking to the future, we believe there are several
directions worth exploring in depth. First, expanding the
breadth and depth of the assessment, by extending the
assessment objects from the national level down to the city,
community, and even enterprise levels, and incorporating
more real-time, high-granularity data sources. Second,
developing an interactive online visualization platform where
users can dynamically adjust indicator weights and view
real-time changes in assessment results, thereby transforming
the assessment framework of this study itself into a decision
exploration tool. Third, conducting longitudinal tracking
studies, i.e., publishing the ET-VDRI index annually or
biennially to track the development trajectories of countries
and analyze the underlying reasons behind success or failure
cases, thereby contributing to the knowledge sharing of the
global energy transition.
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VI. CONCLUSION

At a critical juncture in the transition of the global energy
system towards a sustainable future, how to effectively
utilize the growing data resources has become a core factor
determining the success or failure of the transition. By
constructing a multi-criteria assessment framework that
integrates visualization design innovation with data-driven
decision-making, this study systematically addresses the core
challenge of "how to transform complex energy data into
actionable decision insights." Our research clearly indicates
that data visualization is far from being a mere technical
presentation tool; it is a cognitive engine and a decision
catalyst that can significantly enhance the efficiency,
transparency, and scientific rigor of decision-making.

The core contribution of this study lies in proposing the
"Energy Transition Visualization-based Decision Readiness
Index" (ET-VDRI) and, based on it, constructing a
comprehensive evaluation system that includes four
dimensions: visualization quality, user experience, decision
support efficacy, and technological innovation capability.
Through an empirical analysis of 15 representative countries
worldwide, we have not only quantified the relative positions
of these countries in this field but, more importantly, have
identified four  different development models:
"Comprehensive Leaders," "Technology-Driven Innovators,"
"Balanced Practitioners," and "Potential Followers." This
finding reveals that there is no single path to enhancing data-
driven decision-making capabilities; countries should
formulate differentiated development strategies based on
their specific circumstances in technology, design, policy,
and data ecosystems.

Ultimately, this study calls for a greater emphasis on a
"human-centered" data-driven paradigm in future energy
policy-making, technological R&D, and market investment.
This means that we need to place the cognitive needs and
user experience of the final decision-makers at the core of
the design process, promoting a profound shift in energy
decision support tools from being function-driven to being
experience-driven and insight-driven. Only in this way can
we truly bridge the gap between raw data and final decisions,
ensuring that the global energy transition proceeds steadily
on a smarter, more efficient, and more inclusive track.
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